An Innovative Sensor for Cable Joint Monitoring and Partial Discharge Localization

Author:

Barbieri LucaORCID,Villa AndreaORCID,Malgesini Roberto,Palladini DanieleORCID,Laurano ChristianORCID

Abstract

To enhance grid reliability, weak points must be monitored. One of the weaknesses is the cable joints, which are prone to failure and can cause great losses from both a technical and economical point of view. Joints failures are usually caused by impurities unintentionally added during installation that cause partial discharges (PDs). In time, these discharges erode the insulation and generate treeing up to a destructive discharge between the conductor and the ground shield. For this reason, a method for the early detection of defects in joint installation and their online monitoring is required. A previously developed sensor was improved by adapting it for this purpose. It is based on the measurement of the induced current on a conductor due to a charge variation. It was experimentally tested on an actual joint in which defects were artificially introduced. Results show that the sensor is able to detect partial discharges. Moreover, a method for PD localization was developed. The first results show a coherency between the possible defect location, numerical simulations and historical background.

Funder

Ministero dello Sviluppo Economico

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Inductive Loop Operation Versus Loop Antenna for Partial Discharge Detection;2024 IEEE 5th International Conference on Dielectrics (ICD);2024-06-30

2. Explosion Resistance Performance Analysis and Structural Optimization of Explosion-Proof Box for Cable Joints;Lecture Notes in Electrical Engineering;2024

3. Severity Factor and Reliability Trend Evaluation of the Italian Transmission Lines;2023 International Conference on Clean Electrical Power (ICCEP);2023-06-27

4. Partial Discharge Propagation Characteristics in Cable Branch Box of 10 kV Power Distribution Network;2022 International Conference on Sensing, Measurement & Data Analytics in the era of Artificial Intelligence (ICSMD);2022-11-30

5. MISSION Project: Design of MV/LV hybrid AC/DC smart-energy grid;2022 AEIT International Annual Conference (AEIT);2022-10-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3