Semisynthesis and Cytotoxic Evaluation of an Ether Analogue Library Based on a Polyhalogenated Diphenyl Ether Scaffold Isolated from a Lamellodysidea Sponge

Author:

Ramage Kelsey S.1ORCID,Lock Aaron2,White Jonathan M.3,Ekins Merrick G.14ORCID,Kiefel Milton J.5ORCID,Avery Vicky M.2ORCID,Davis Rohan A.16ORCID

Affiliation:

1. Griffith Institute for Drug Discovery, School of Environment and Science, Griffith University, Brisbane, QLD 4111, Australia

2. Discovery Biology, School of Environment and Science, Griffith University, Brisbane, QLD 4111, Australia

3. School of Chemistry and Bio21 Institute, The University of Melbourne, Parkville, VIC 3010, Australia

4. Queensland Museum, South Brisbane, QLD 4101, Australia

5. Institute for Glycomics, School of Environment and Science, Griffith University, Gold Coast, QLD 4222, Australia

6. NatureBank, Griffith Institute for Drug Discovery, Griffith University, Nathan, QLD 4111, Australia

Abstract

The known oxygenated polyhalogenated diphenyl ether, 2-(2′,4′-dibromophenoxy)-3,5-dibromophenol (1), with previously reported activity in multiple cytotoxicity assays was isolated from the sponge Lamellodysidea sp. and proved to be an amenable scaffold for semisynthetic library generation. The phenol group of 1 was targeted to generate 12 ether analogues in low-to-excellent yields, and the new library was fully characterized by NMR, UV, and MS analyses. The chemical structures for 2, 8, and 9 were additionally determined via single-crystal X-ray diffraction analysis. All natural and semisynthetic compounds were evaluated for their ability to inhibit the growth of DU145, LNCaP, MCF-7, and MDA-MB-231 cancer cell lines. Compound 3 was shown to have near-equivalent activity compared to scaffold 1 in two in vitro assays, and the activity of the compounds with an additional benzyl ring appeared to be reliant on the presence and position of additional halogens.

Funder

Australian Research Council

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3