Innovative Methodology for Physical Modelling of Multi-Pass Wire Rod Rolling with the Use of a Variable Strain Scheme

Author:

Laber Konrad BłażejORCID

Abstract

This paper presents the results of physical modelling of the process of multi-pass rolling of a wire rod with controlled, multi-stage cooling. The main goal of this study was to verify the possibility of using a torsion plastometer, which allows conducting tests on multi-sequence torsion, tensile, compression and in the so-called complex strain state to physically replicate the actual technological process. The advantage of the research methodology proposed in this paper in relation to work published so far, is its ability to replicate the entire deformation cycle while precisely preserving the temperature of the deformed material during individual stages of the reproduced technological process and its ability to quickly and accurately determine selected mechanical properties during a static tensile test. Changes in the most important parameters of the process (strain, strain rate, temperature, and yield stress) were analyzed for each variant. After physical modelling, the material was subjected to metallographic and hardness tests. Then, on the basis of mathematical models and using measurements of the average grain size, chemical composition, and hardness, the yield strength, ultimate tensile strength, and plasticity reserve were determined. The scope of the tests also included determining selected mechanical properties during a static tensile test. The obtained results were verified by comparing to results obtained under industrial conditions. The best variant was a variant consisting of physically replicating the rolling process in a bar rolling mill as multi-sequence non-free torsion; the rolling process in an NTM block (no twist mill) as non-free continuous torsion, with the total strain equal to the actual strain occurring at this stage of the technological process; and the rolling process in an RSM block (reducing and sizing mill) as tension, while maintaining the total strain value in this block. The differences between the most important mechanical parameters determined during a static tensile test of a wire rod under industrial conditions and the material after physical modelling were 1.5% for yield strength, approximately 6.1% for ultimate tensile strength, and approximately 4.1% for the relative reduction of the area in the fracture and plasticity reserve.

Publisher

MDPI AG

Subject

General Materials Science

Reference41 articles.

1. Nowoczesne walcownie walcówki (Modern wire rod mills);Grosman;Hut.-Wiadomości Hut. (Met.-Lurgist-Metall. News),2001

2. Problemy fizycznego modelowania procesów walcowania walcówki z dużymi prędkościami (Problems of physical modelling of wire rod rolling processes at high speeds);Laber;Obróbka Plast. Met. (Met. Form.),2016

3. Kuziak, R. (2005). Modeling of Structure Changes and Phase Transformations Occurring in the Processes of Thermo-Plastic Treatment of Steel, Instytut Metalurgii Żelaza (Institute for Ferrous Metallurgy).

4. Kajzer, S., Kozik, R., and Wusatowski, R. (1997). Projektowanie Technologii (Selected Problems from Metal Forming Processes. Technology Design). Wyd. Politechniki Śląskiej, Publishing House of the Silesian University of Technology.

5. Development of hot rolling technology using the method of physical modeling;Zhauyt;Metalurgija,2021

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3