Abstract
YCo5 permanent magnet exhibits high uniaxial magnetocrystalline anisotropy energy and has a high Curie temperature. These are good properties for a permanent magnet, but YCo5 has a low energy product, which is notably insufficient for a permanent magnet. In order to improve the energy product in YCo5, we suggest replacing cobalt with iron, which has a much bigger magnetic moment. With a combination of density-functional-theory calculations and thermodynamic CALculation of PHAse Diagrams (CALPHAD) modeling, we show that a new magnet, YFe3(Ni1-xCox)2, is thermodynamically stable and exhibits an improved energy product without significant detrimental effects on the magnetocrystalline anisotropy energy or the Curie temperature.
Funder
Lawrence Livermore National Laboratory
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献