Application of Fuzzy Theory and Optimum Computing to the Obstacle Avoidance Control of Unmanned Underwater Vehicles

Author:

Chen ShihmingORCID,Lin Tsungyin,Jheng Kaiyi,Wu Chengmao

Abstract

Autonomous underwater vehicles and remotely operated vehicles (ROVs) are unmanned underwater vehicles widely used in marine environments. Establishing an efficient obstacle avoidance approach in underwater environments remains a challenge for these vehicles. Most studies have relied on simulated results; few have been conducted with vehicles in a real environment. This study used an ROV equipped with a scanning sonar as an experimental platform and applied fuzzy logic control to solve nonlinear and uncertain problems, which are difficult to address using conventional control theory. Using data from the depth and inertial sensors, fuzzy logic control can output defuzzification command values that are passed through a fuzzy inference engine to control ROV motion. Fuzzy logic control was used to evaluate depth and heading degrees in navigation experiments. In heading navigation, scanning sonar was used to detect obstacles in the scanning range. An optimum navigation strategy was also developed to calculate appropriate headings to safely and stably navigate during a mission to attain a predetermined destination. The results indicated that the ROV with fuzzy logic control had superior control stability and obstacle avoidance in an underwater environment.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference18 articles.

1. Finite element cable-model for Remotely Operated Vehicles (ROVs) by application of beam theory

2. Vehicles for Deep Sea Exploration;Humphris,2009

3. On-line adaptive fuzzy modeling and control for autonomous underwater vehicle;Hassanein,2013

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3