Decontamination of Chlorpyrifos Residue in Soil by Using Mentha piperita (Lamiales: Lamiaceae) for Phytoremediation and Two Bacterial Strains

Author:

Aioub Ahmed A. A.12ORCID,Fahmy Mohamed A.3,Ammar Esraa E.45,Maher Mohamed6,Ismail Heba A.7,Yue Jin8,Zhang Qichun1ORCID,Abdel-Wahab Sarah I. Z.2

Affiliation:

1. Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Key Laboratory of Environment Remediation and Ecological Health, Zhejiang University, Ministry of Education, Hangzhou 310058, China

2. Plant Protection Department, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt

3. Department of Agricultural Microbiology, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt

4. School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China

5. Plant Ecology Sector, Botany Department, Faculty of Science, Tanta University, Tanta 31527, Egypt

6. Department of Biochemistry, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt

7. Plant Protection Research Institute, Agricultural Research Center, Dokki, Giza 12618, Egypt

8. Anji County Agriculture and Rural Bureau, Hangzhou 313300, China

Abstract

This study utilizes Mentha piperita (MI) for the first time to investigate the uptake and translocation of chlorpyrifos (CPF; 10 µg g−1) from soil, introducing a new approach to improve the efficacy of this technique, which includes using biosurfactants (Bacillus subtilis and Pseudomonas aeruginosa) at 107 CFU/mL to degrade CPF under greenhouse conditions. Moreover, antioxidant enzymes, including superoxide dismutase (SOD) and peroxidase (Prx), and oxidative stress due to hydrogen peroxide (H2O2) and malondialdehyde (MDA) in MI roots and leaves were evaluated under CPF stress. Our results demonstrated that amending soil with MI and B. subtilis followed by P. aeruginosa significantly reduced CPF levels in the soil (p > 0.05) and enhanced CPF concentrations in MI roots and leaves after 1, 3, 7, 10, and 14 days of the experiment. Furthermore, CPF showed its longest half-life (t1/2) in soil contaminated solely with CPF, lasting 15.36 days. Conversely, its shortest half-life occurred in soil contaminated with CPF and treated with MI along with B. subtilis, lasting 4.65 days. Soil contaminated with CPF and treated with MI and P. aeruginosa showed a half-life of 7.98 days. The half-life (t1/2) of CPF-contaminated soil with MI alone was 11.41 days. A batch equilibrium technique showed that B. subtilis is better than P. aeruginosa for eliminating CPF from soil in In vitro experiments. Notably, CPF-polluted soil treated with coadministration of MI and the tested bacteria improved the activities of SOD and Prx and reduced H2O2 and MDA compared with CPF-polluted soil treated with MI alone. Our findings demonstrated that using B. subtilis and P. aeruginosa as biosurfactants to augment phytoremediation represents a commendable strategy for enhancing the remediation of CPF contamination in affected sites while reducing the existence of harmful pesticide remnants in crop plants.

Funder

National Key Research and Development Program of China

Province Key Research and Development Program of Jiangsu, China

Publisher

MDPI AG

Reference101 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3