Boron Compounds Mitigate 2,3,7,8-Tetrachlorodibenzo-p-dioxin-Induced Toxicity in Human Peripheral Blood Mononuclear Cells

Author:

Arslan Mehmet Enes1ORCID,Baba Cem1ORCID,Tozlu Ozlem Ozdemir1ORCID

Affiliation:

1. Department of Molecular Biology and Genetics, Faculty of Sciences, Erzurum Technical University, 25050 Erzurum, Turkey

Abstract

2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) stands as one of the most potent halogenated polycyclic hydrocarbons, known to inflict substantial cytotoxic effects on both animal and human tissues. Its widespread presence and recalcitrance make it an environmental and health concern. Efforts are being intensively channeled to uncover strategies that could mitigate the adverse health outcomes associated with TCDD exposure. In the realm of counteractive agents, boron compounds are emerging as potential candidates. These compounds, which have found applications in a spectrum of industries ranging from agriculture to pharmaceutical and cosmetic manufacturing, are known to modulate several cellular processes and enzymatic pathways. However, the dose–response relationships and protective potentials of commercially prevalent boron compounds, such as boric acid (BA), ulexite (UX), and borax (BX), have not been comprehensively studied. In our detailed investigation, when peripheral blood mononuclear cells (PBMCs) were subjected to TCDD exposure, they manifested significant cellular disruptions. This was evidenced by compromised membrane integrity, a marked reduction in antioxidant defense mechanisms, and a surge in the malondialdehyde (MDA) levels, a recognized marker for oxidative stress. On the genomic front, increased 8-OH-dG levels and chromosomal aberration (CA) frequency suggested that TCDD had the potential to cause DNA damage. Notably, our experiments have revealed that boron compounds could act as protective agents against these disruptions. They exhibited a pronounced ability to diminish the cytotoxic, genotoxic, and oxidative stress outcomes instigated by TCDD. Thus, our findings shed light on the promising role of boron compounds. In specific dosages, they may not only counteract the detrimental effects of TCDD but also serve as potential chemopreventive agents, safeguarding the cellular and genomic integrity of PBMCs.

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3