Affiliation:
1. School of Environmental Science & Spatial Informatics, China University of Mining & Technology, Xuzhou 221116, China
2. State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
3. Guangdong-Hong Kong-MaCao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
4. Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou 510640, China
5. Guangdong University of Petrochemical Technology, Maoming 525000, China
Abstract
Novel brominated flame retardants (NBFRs) and dechlorane plus (DP) have been widely used as alternatives to traditional BFRs. However, little is known about the temporal trends of NBFR and DP pollution in e-waste recycling sites. In the current study, three composite sediment cores were collected from an e-waste-polluted pond located in a typical e-waste recycling site in South China to investigate the historical occurrence and composition of NBFRs and DP. The NBFRs and DP were detected in all layers of the sediment cores with concentration ranges of 5.71~180,895 and 4.95~109,847 ng/g dw, respectively. Except for 2,3,5,6-tetrabromo-p-xylene (pTBX) and 2,3,4,5,6-pentabromoethylbenzene (PBEB), all the NBFR compounds and DP showed a clear increasing trend from the bottom to top layers. These results implied the long-term and severe contamination of NBFRs and DP. Decabromodiphenyl ethane (DBDPE) was the most abundant NBFR with the contribution proportions of 58 ± 15%, 73 ± 15%, and 71 ± 18% in three sediment cores, followed by 1,2-bis(2,4,6-tribromophenoxy) ethane (BTBPE) and pentabromobenzene (HBB). The ratios of BTBPE/Octa-BDEs and DBDPE/Deca-BDEs varied from 0.12 to 60 and from 0.03 to 0.49, respectively, which had no clear increase trends with a decrease in sediment depth. As for DP, the fanti values (the concentration ratios of anti-DP to the sum of anti-DP and syn-DP) in sediment cores ranged from 0.41 to 0.83, almost falling in the range of those in DP technical products, suggesting that DP degradation did not occur in sediment cores. The environmental burdens of DBDPE, BTBPE, HBB, PBT, PBEB, pTBX, and DP were estimated to be 34.0, 5.67, 10.1, 0.02, 0.02, 0.01, and 34.8 kg, respectively. This work provides the first insight into the historical contamination status of NBFRs and DP in the sediments of an e-waste recycling site.
Funder
National Natural Science Foundation of China
Guangdong Foundation for Program of Science and Technology Research
State Key Laboratory of Organic Geochemistry
Natural Science Foundation of Jiangsu Province
Fundamental Research Funds for the Central Universities
Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province
Projects of PhDs’ Start-up Research of GDUPT