Safe Disposal of Accident Wastewater in Chemical Industrial Parks Using Non-Thermal Plasma with ZnO-Fe3O4 Composites

Author:

Li Aihua1,Wang Chaofei2,Qian Chengjiang1ORCID,Wen Jinfeng1,Guo He2

Affiliation:

1. College of Safety Science and Engineering, Nanjing Tech University, Nanjing 211816, China

2. College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China

Abstract

Chemical wastewater has a high concentration of toxic and hazardous antibiotic pollutants, which not only devastates the ecological environment and disrupts the ecological balance, but also endangers human health. This research proposed a non-thermal plasma (NTP) combined with a ZnO-Fe3O4 nano-catalyst system to achieve the efficient degradation of ciprofloxacin (CIP) in chemical wastewater. Firstly, ZnO-Fe3O4 composite materials were prepared using hydrothermal method and characterized with scanning electron microscopy (SEM), transmission electron microscope (TEM), X-ray diffractometer (XRD), X-ray photoelectron spectroscopy (XPS), etc. With the sole NTP, NTP/ZnO, and NTP/ZnO-Fe3O4 systems, the removal efficiency of CIP can reach 80.1%, 88.2%, and 99.6%, respectively. The optimal doping amount of Fe3O4 is 14%. Secondly, the capture agent experiment verified that ·OH, ·O2−, and 1O2 all have a certain effect on CIP degradation. Then, liquid chromatography–mass spectrometry (LC-MS) was used to detect the intermediate and speculate its degradation pathway, which mainly included hydroxyl addition, hydroxyl substitution, and piperazine ring destruction. After treatment with the NTP/ZnO-Fe3O4 system, the overall toxicity of the product was reduced. Finally, a cyclic experiment was conducted, and it was found that the prepared ZnO-Fe3O4 catalyst has good reusability. The NTP/ZnO-Fe3O4 was also applied in practical pharmaceutical wastewater treatment and has practical applicability.

Funder

Natural Science Research of Jiangsu Higher Education Institution of China

Publisher

MDPI AG

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3