Complete Photooxidation of Formaldehyde to CO2 via Ni-Dual-Atom Decorated Crystalline Triazine Frameworks: A DFT Study

Author:

Lu Zhao12ORCID,Wang Zhongliao3

Affiliation:

1. HKUST Shenzhen-Hong Kong Collaborative Innovation Research Institute, Shenzhen 515100, China

2. Research and Development Center, Shenzhen Foundation Engineering Co., Ltd., Shenzhen 515100, China

3. Anhui Province Industrial Generic Technology Research Center for Alumics Materials, Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, School of Physics and Electronic Information, Huaibei Normal University, Huaibei 235000, China

Abstract

Formaldehyde (CH2O) emerges as a significant air pollutant, necessitating effective strategies for its oxidation to mitigate adverse impacts on human health and the environment. Among various technologies, the photooxidation of CH2O stands out owing to its affordability, safety, and effectiveness. Nitrogen-rich crystalline triazine-based organic frameworks (CTFs) exhibit considerable potential in this domain. Nevertheless, the weak and unstable CH2O adsorption hinders the overall oxidation efficiency of CTF. To address this limitation, we incorporate single and dual Ni atoms into nitrogen-rich CTFs by density functional theory (DFT) calculations, resulting in CTF-Ni and CTF-2Ni. This strategic modification significantly enhances the adsorption capability of CH2O. Notably, this synergy between Ni dual atoms activates CH2O by strong chemical adsorption, thereby reducing the energy barrier of CH2O oxidation and achieving the complete oxidation of CH2O to CO2. Moreover, the introduction of dual-atom Ni over CTF ameliorates visible and near-infrared light absorption and facilitates photoexcited charge transfer and separation. Finally, the underlying mechanisms of complete CH2O oxidation over CTF-2Ni are proposed. This work offers novel insights into the rational design of photocatalysts for CH2O oxidation through the integration of Ni dual atoms into CTFs.

Funder

Hetao Shenzhen-Hong Kong Science and Technology Innovation Cooperation Zone

Shenzhen Science and Technology Program

Shenzhen Zhongdi Construction Engineering Co., Ltd.

Key Research Project in Natural Sciences for Higher Education Institutions by the Ministry of Education

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3