Explicit Solutions to Large Deformation of Cantilever Beams by Improved Homotopy Analysis Method I: Rotation Angle

Author:

Li Yinshan,Li Xinye,Huo Shuhao,Xie Chen

Abstract

An improved homotopy analysis method (IHAM) is proposed to solve the nonlinear differential equation, especially for the case when nonlinearity is strong in this paper. As an application, the method was used to derive explicit solutions to the rotation angle of a cantilever beam under point load at the free end. Compared with the traditional homotopy method, the derivation includes two steps. A new nonlinear differential equation is firstly constructed based on the current nonlinear differential equation of the rotation angle and the auxiliary quadratic nonlinear differential equation. In the second step, a high-order non-linear iterative homotopy differential equation is established based on the new non-linear differential equation and the auxiliary linear differential equation. The analytical solution to the rotation angle is then derived by solving this high-order homotopy equation. In addition, the convergence range can be extended significantly by the homotopy–Páde approximation. Compared with the traditional homotopy analysis method, the current improved method not only speeds up the convergence of the solution, but also enlarges the convergence range. For the large deflection problem of beams, the new solution for the rotation angle is more approachable to the engineering designers than the implicit exact solution by the Euler–Bernoulli law. It should have significant practical applications in the design of long bridges or high-rise buildings to minimize the potential error due to the extreme length of the beam-like structures.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference48 articles.

1. Prospect of world bridge engineering in the 21st century;Xiang;J. Civ. Eng.,2000

2. Long-Span Bridge Structure;Qin,2008

3. High-rise building structure facing the 21st century;He;Build. Sci.,2002

4. Analysis of the world’s tallest 100 buildings;Hu;Constr. Technol.,2004

5. Perturbation Methods in Applied Mathematics;Cole,1968

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3