Detection and Classification of Artificial Defects on Stainless Steel Plate for a Liquefied Hydrogen Storage Vessel Using Short-Time Fourier Transform of Ultrasonic Guided Waves and Linear Discriminant Analysis

Author:

Hwang Young-In,Seo Mu-KyungORCID,Oh Hyun Geun,Choi Namkyoung,Kim GeonwooORCID,Kim Ki-Bok

Abstract

Liquefied hydrogen storage vessels (LHSVs) are vulnerable to surface-crack initiation, propagation, and fracture on their surfaces because they are under high-pressure, low-temperature conditions. Defects can also occur in the coatings of the storage containers used to prevent hydrogen permeation, and these lead to surface defects such as pitting corrosions. Together, these increase the probability of liquid hydrogen leaks and can cause serious accidents. Therefore, it is important to detect surface defects during periodic surface inspections of LHSVs. Among the candidate non-destructive evaluation (NDE) techniques, testing using guided waves (GWs) is effective for detecting surface defects. Because of the ability of GWs to travel long distances without significant acoustic attenuation, GW testing has attracted much attention as a promising structural monitoring technique for LHSVs. In this study, an ultrasonic NDE method was designed for detecting surface defects of 304SS plate, which is the main material used for fabricating LHSVs. It involves the use of linear discriminant analysis (LDA) based on short-time Fourier transform (STFT) pixel information produced from GW data. To accomplish this, the differences in the number of STFT pixels between sound and defective specimens were used as a major factor in distinguishing the two groups. Consequently, surface defects could be detected and classified with 97% accuracy by the newly developed pixel-based mapping method. This indicates that the newly developed NDE method with LDA can be used to detect defects and classify LHSVs as either sound or defective.

Funder

Korea Research Institute of Standards and Science

Ministry of Agriculture, Food and Rural Affairs

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3