A High-Level Representation of the Navigation Behavior of Website Visitors

Author:

Huidobro AliciaORCID,Monroy RaúlORCID,Cervantes BárbaraORCID

Abstract

Knowing how visitors navigate a website can lead to different applications. For example, providing a personalized navigation experience or identifying website failures. In this paper, we present a method for representing the navigation behavior of an entire class of website visitors in a moderately small graph, aiming to ease the task of web analysis, especially in marketing areas. Current solutions are mainly oriented to a detailed page-by-page analysis. Thus, obtaining a high-level abstraction of an entire class of visitors may involve the analysis of large amounts of data and become an overwhelming task. Our approach extracts the navigation behavior that is common among a certain class of visitors to create a graph that summarizes class navigation behavior and enables a contrast of classes. The method works by representing website sessions as the sequence of visited pages. Sub-sequences of visited pages of common occurrence are identified as “rules”. Then, we replace those rules with a symbol that is given a representative name and use it to obtain a shrinked representation of a session. Finally, this shrinked representation is used to create a graph of the navigation behavior of a visitor class (group of visitors relevant to the desired analysis). Our results show that a few rules are enough to capture a visitor class. Since each class is associated with a conversion, a marketing expert can easily find out what makes classes different.

Funder

Consejo Nacional de Ciencia y Tecnología

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference51 articles.

1. Modern Lead Generation in Internet Marketing for the Development of Enterprise Potential;Bondarenko;Int. J. Innov. Technol. Explor. Eng. (IJITEE),2019

2. The Value of Descriptive Analytics: Evidence from Online Retailers. Harvard Business School Working Paper, No. 21-067 https://www.hbs.edu/faculty/Pages/item.aspx?num=59259

3. Principles of Marketing;Kotler,2007

4. The Impact of Proper Marketing Communication Channels on Consumer’s Behavior and Segmentation Consumers;Hun;Asian J. Bus. Manag.,2014

5. Marketing 4.0. Moving from Traditional to Digital;Kotler,2017

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3