Similar Word Replacement Method for Improving News Commenter Analysis

Author:

Lee Deun,Choi Sunoh

Abstract

In Korea, it is common to read and comment on news stories on portal sites. To influence public opinion, some people write comments repeatedly, some of which are similar to those posted by others. This has become a serious social issue. In our previous research, we collected approximately 2.68 million news comments posted in April 2017. We classified the political stance of each author using a deep learning model (seq2seq), and evaluated how many similar comments each user wrote, as well as how similar each comment was to those posted by other people, using the Jaccard similarity coefficient. However, as our previous model used Jaccard’s similarity only, the meaning of the comments was not considered. To solve this problem, we propose similar word replacement (SWR) using word2vec and a method to analyze the similarity between user comments and classify the political stance of each user. In this study, we showed that when our model used SWR rather than Jaccard’s similarity, its ability to detect similarity between comments increased 3.2 times, and the accuracy of political stance classification improved by 6%.

Funder

National Research Foundation of Korea

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference38 articles.

1. User Ratio Reading News from Portal Siteshttps://www.dailyimpact.co.kr/news/articleView.html?idxno=50488

2. Naverhttp://www.naver.com

3. Daumhttp://www.daum.net

4. Assembly’s NIS Prove Fizzles Outhttp://www.koreatimes.co.kr/www/nation/2013/08/113_141397.html

5. Governor Kim Kyoung-Soo Sentenced to 2 Years for Online Opinion Rigginghttp://www.koreatimes.co.kr/www/nation/2019/01/113_262961.html

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3