An Analytical Model to Predict Foot Sole Temperature: Implications to Insole Design for Physical Activity in Sport and Exercise

Author:

Nemati HossainORCID,Naemi RoozbehORCID

Abstract

Foot sole temperature, besides its importance in thermal comfort, can be considered an important factor in identifying tissue injuries due to heavy activities or diseases. Hyperthermia, which is a raise in the foot temperature, increases the risk of diabetic ulcers considerably. In this study, a model is proposed to predict the foot sole temperature with acceptable accuracy. This model for the first time considers both the thermal and mechanical properties of the shoe sole, the intensity of the activity, the ambient condition, and sweating, which are involved in the thermal interaction between the sole of the foot and footwear. Furthermore, the proposed model provides the opportunity to estimate the contributions of different parameters in foot thermal regulation by describing the interaction of activity, duration, and intensity as well as sweating in influencing the foot sole temperature. In doing so it takes into account the relative importance of heat capacitance and the thermal conductivity. The results of this study revealed that sweating is not as effective in cooling the ball area of the foot while it is the principal contributor to thermal regulation in the arch area. The model also showed the importance of trapped air in keeping the foot warm, especially in cold conditions. Based on the simulation results, in selecting the shoe sole, and in addition to the conductivity, the thermal capacity of the sole of the shoe needs to be considered. The developed analytical model allowed the investigation of the contribution of all the involved parameters in foot thermal regulation and has shown that a different foot temperature can be achieved when the amount of material versus air is changed in the insole design. This can have practical implications in the insole design for a variety of conditions such as hypo and hyper-thermia in physical activities in sports and exercise settings.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference39 articles.

1. Assessing the lower temperature limit for comfort in footwear;Havenith;Proceedings of the 15th International Conference on Environmental Ergonomics,2013

2. Effect of gait on formation of thermal environment inside footwear

3. Evaluation of thermal formation and air ventilation inside footwear during gait: The role of gait and fitting

4. Thermal resistance of leather and membranes for summer desert military footwear under different climate conditions;Kopitar,2019

5. The Study of Footwear Thermal Insulation Using Thermography and the Finite Volume Method

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3