Simulating 3D Human Postural Stabilization in Vibration and Dynamic Driving

Author:

Mirakhorlo Mojtaba,Kluft NickORCID,Desai RajORCID,Cvetković MarkoORCID,Irmak Tugrul,Shyrokau BarysORCID,Happee RienderORCID

Abstract

In future automated vehicles we will often engage in non-driving tasks and will not watch the road. This will affect postural stabilization and may elicit discomfort or even motion sickness in dynamic driving. Future vehicles will accommodate this with properly designed seats and interiors, whereas comfortable vehicle motion will be achieved with smooth driving styles and well-designed (active) suspensions. To support research and development in dynamic comfort, this paper presents the validation of a multi-segment full-body human model, including visuo-vestibular and muscle spindle feedback, for postural stabilization. Dynamic driving is evaluated using a “sickening drive”, including a 0.2 Hz 4 m/s2 slalom. Vibration transmission is evaluated with compliant automotive seats, applying 3D platform motion and evaluating 3D translation and rotation of pelvis, trunk and head. The model matches human motion in dynamic driving and reproduces fore–aft, lateral and vertical oscillations. Visuo-vestibular and muscle spindle feedback are shown to be essential, in particular, for head–neck stabilization. Active leg muscle control at the hips and knees is shown to be essential to stabilize the trunk in the high-amplitude slalom condition but not with low-amplitude horizontal vibrations. However, active leg muscle control can strongly affect 4–6 Hz vertical vibration transmission. Compared to the vibration tests, the dynamic driving tests show enlarged postural control gains to minimize trunk and head roll and pitch and to align head yaw with driving direction. Human modelling can enable the insights required to achieve breakthrough comfort enhancements, while enabling efficient developments for a wide range of driving conditions, body sizes and other factors. Hence, modelling human postural control can accelerate the innovation of seats and vehicle motion-control strategies for (automated) vehicles.

Funder

Toyota Motor Corporation

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference36 articles.

1. Objective and subjective responses to motion sickness: the group and the individual

2. 3DOP: Comfort-oriented Motion Planning for Automated Vehicles with Active Suspensions;Zheng;Proceedings of the IEEE Intelligent Vehicles Symposium (IV),2022

3. Curve Tilting With Nonlinear Model Predictive Control for Enhancing Motion Comfort

4. A K-Seat-Based PID Controller for Active Seat Suspension to Enhance Motion Comfort

5. Assessment of optimal passive suspensions regarding motion sickness mitigation in different road profiles and sitting conditions;Papaioannou;Proceedings of the 2021 IEEE International Intelligent Transportation Systems Conference (ITSC),2021

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3