Effect of Waters Enriched in O2 by Injection or Electrolysis on Performance and the Cardiopulmonary and Acid–Base Response to High Intensity Exercise

Author:

Daussin Frédéric N.ORCID,Péronnet François,Charton Antoine,Lonsdorfer Evelyne,Doutreleau StéphaneORCID,Geny Bernard,Richard Ruddy

Abstract

Several brands of water enriched with O2 (O2-waters) are commercially available and are advertised as wellness and fitness waters with claims of physiological and psychological benefits, including improvement in exercise performance. However, these claims are based, at best, on anecdotal evidence or on a limited number of unreliable studies. The purpose of this double-blind randomized study was to compare the effect of two O2-waters (~110 mg O2·L−1) and a placebo (10 mg O2·L−1, i.e., close to the value at sea level, 9–12 mg O2·L−1) on the cardiopulmonary responses and on performance during high-intensity exercise. One of the two O2-waters and the placebo were prepared by injection of O2. The other O2-water was enriched by an electrolytic process. Twenty male subjects were randomly allocated to drink one of the three waters in a crossover study (2 L·day−1 × 2 days and 15 mL·kg−1 90 min before exercise). During each exercise trial, the subjects exercised at 95.9 ± 4.7% of maximal workload to volitional fatigue. Exercise time to exhaustion and the cardiopulmonary responses, arterial lactate concentration and pH were measured. Oxidative damage to proteins, lipids and DNA in blood was assessed at rest before exercise. Time to exhaustion (one-way ANOVA) and the responses to exercise (two-way ANOVA [Time; Waters] with repeated measurements) were not significantly different among the three waters. There was only a trend (p = 0.060) for a reduction in the time constant of the rapid component of VO2 kinetics with the water enriched in O2 by electrolysis. No difference in oxidative damage in blood was observed between the three waters. These results suggest that O2-water does not speed up cardiopulmonary response to exercise, does not increase performance and does not trigger oxidative stress measured at rest.

Publisher

MDPI AG

Subject

Food Science,Nutrition and Dietetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3