Dual Dynamic Scheduling for Hierarchical QoS in Uplink-NOMA: A Reinforcement Learning Approach

Author:

Li XiangjunORCID,Cui QimeiORCID,Zhai JinliORCID,Huang Xueqing

Abstract

The demand for bandwidth-intensive and delay-sensitive services is surging daily with the development of 5G technology, resulting in fierce competition for scarce radio resources. Power domain Nonorthogonal Multiple Access (NOMA) technologies can dramatically improve system capacity and spectrum efficiency. Unlike existing NOMA scheduling that mainly focuses on fairness, this paper proposes a power control solution for uplink hybrid OMA and PD-NOMA in dual dynamic environments: dynamic and imperfect channel information together with the random user-specific hierarchical quality of service (QoS). This paper models the power control problem as a nonconvex stochastic, which aims to maximize system energy efficiency while guaranteeing hierarchical user QoS requirements. Then, the problem is formulated as a partially observable Markov decision process (POMDP). Owing to the difficulty of modeling time-varying scenes, the urgency of fast convergency, the adaptability in a dynamic environment, and the continuity of the variables, a Deep Reinforcement Learning (DRL)-based method is proposed. This paper also transforms the hierarchical QoS constraint under the NOMA serial interference cancellation (SIC) scene to fit DRL. The simulation results verify the effectiveness and robustness of the proposed algorithm under a dual uncertain environment. As compared with the baseline Particle Swarm Optimization algorithm (PSO), the proposed DRL-based method has demonstrated satisfying performance.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Energy-Efficient Hierarchical Resource Allocation in Uplink–Downlink Decoupled NOMA HetNets;IEEE Transactions on Network and Service Management;2023-09

2. A Hybrid Deep Reinforcement Learning Approach for Dynamic Task Offloading in NOMA-MEC System;2022 19th Annual IEEE International Conference on Sensing, Communication, and Networking (SECON);2022-09-20

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3