Abstract
Algae are a diverse group of aquatic organisms and have a potential to produce renewable biofuel via hydrothermal liquefaction (HTL). This study investigated the effects of reaction environments on biocrude production from “Tetraselmis sp.” algae strain by HTL process using red mud (RM) based catalyst. The inert (N2), ethylene (C2H4), reducing (10% H2/90% N2), and oxidizing (10% O2/90% N2) environments were applied to the non-catalytic as well as catalytic HTL treatments with two forms of RM catalysts: RM reduced at 500 °C (RRM) and nickel-supported RM (Ni/RM). Under nitrogen, ethylene and reducing environments, the biocrude yield increased by the following trend: No Catalyst < RRM < Ni/RM. The Ni/RM catalyst produced the highest biocrude yield (37 wt.%) in an ethylene environment, generated the lowest total acid number (14 mg KOH/g) under inert atmosphere, and lowered sulfur (33–66%) and oxygen (18–30%) from biocrude products irrespective of environments. The RRM catalyst maximized the biocrude carbon content (61 wt.%) under a reducing environment and minimized the heavy metal and phosphorus transfer from the feedstock to biocrude in studied ambiences. The reducing environment facilitated mild hydrotreatment during HTL reaction in the presence of RRM catalyst. Among the non-catalytic experiments, the reducing atmosphere optimized carbon content (54.3 wt.%) and calorific value (28 MJ/kg) with minimum oxygen amount (27.2 wt.%) in biocrudes.
Funder
Alabama Department of Economic and Community Affairs
National Science Foundation
Alabama Agricultural Experiment Station
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献