Energy and Electronic Properties of Nanostructures Based on the CL-20 Framework with the Replacement of the Carbon Atoms by Silicon and Germanium: A Density Functional Theory Study

Author:

Gimaldinova Margarita A.,Maslov Mikhail M.ORCID,Katin Konstantin P.ORCID

Abstract

We consider SinCL-20 and GenCL-20 systems with carbon atoms replaced by silicon/germanium atoms and their dimers. The physicochemical properties of the silicon/germanium analogs of the high-energy molecule CL-20 and its dimers were determined and studied using density functional theory with the B3LYP/6-311G(d,p) level of theory. It was found that the structure and geometry of SinCL-20/GenCL-20 molecules change dramatically with the appearance of Si-/Ge-atoms. The main difference between silicon- or germanium-substituted SinCL-20/GenCL-20 molecules and the pure CL-20 molecule is that the NO2 functional groups make a significant rotation relative to the starting position in the classical molecule, and the effective diameter of the frame of the systems increases with the addition of Si-/Ge-atoms. Thus, the effective framework diameter of a pure CL-20 molecule is 3.208 Å, while the effective diameter of a fully silicon-substituted Si6CL-20 molecule is 4.125 Å, and this parameter for a fully germanium-substituted Ge6CL-20 molecule is 4.357 Å. The addition of silicon/germanium atoms to the system leads to a decrease in the binding energy. In detail, the binding energies for CL-20/Si6CL-20/Ge6CL-20 molecules are 4.026, 3.699, 3.426 eV/atom, respectively. However, it has been established that the framework maintains stability, with an increase in the number of substituting silicon or germanium atoms. In addition, we designed homodesmotic reactions for the CL-20 molecule and its substituted derivatives Si6CL-20/Ge6CL-20, and then determined the strain energy to find out in which case more energy would be released when the framework breaks. Further, we also studied the electronic properties of systems based on CL-20 molecules. It was found that the addition of germanium or silicon atoms instead of carbon leads to a decrease in the size of the HOMO–LUMO gap. Thus, the HOMO–LUMO gaps of the CL-20/Si6CL-20/Ge6CL-20 molecules are 5.693, 5.339, and 5.427 eV, respectively. A similar dependence is also observed for CL-20 dimers. So, in this work, we have described in detail the dependence of the physicochemical parameters of CL-20 molecules and their dimers on the types of atoms upon substitution.

Funder

NRNU MEPhI program Priority 2030

Publisher

MDPI AG

Subject

General Materials Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3