Early Warning and Joint Regulation of Water Quantity and Quality in the Daqing River Basin

Author:

Chen Liang,Yang Mingxiang,Liu Yang,Nan Linjiang

Abstract

In the recent decades, the issue of water-resource security of the Daqing River Basin, which is one of the five major rivers in the Haihe River Basin, has become increasingly serious affected by climate change and human activities. In this paper, a dynamic simulation and early warning model of water quantity and quality in this basin based on the SWAT model was constructed to promote the implementation of water environment quality and safety bottom line in the Beijing-Tianjin-Hebei region. The results of the study are as follows: (1) When encountering a once-in-a-century rainstorm, the flood pressure of Zijingguan in the flood season is the highest, with the highest water level reaching 521.23 m, and the overall maximum runoff follows the order of Zijingguan > Fuping > Zhangfang. (2) When the NH3-N emissions are reduced by 37.64~85.10% in each month (based on the level in 2017), the water quality at the outlet of the basin can reach the standard, and the upper limit of NH3-N emissions is 504.5 t/m. (3) The regulation and control scheme seeking to “ensure the base flow with standard water quality” and “optimize NH3-N annual emission” is proposed in this paper. The NH3-N concentration at the outlet of all watersheds can reach the standard when the basic runoff of each sub-basin reaches 0.01 to 10.32 m3/s. In addition, concentrating the emission in July, August, and September and reducing the emission intensity of NH3-N in proportion can significantly reduce the monthly average NH3-N concentration (<1.99 mg/L) at the outlet section of the basin.

Funder

Science and Technology Major Project for Water Pollution Control and Treatment

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3