Large-Scale Satisfaction Rating-Driven Selection of New Energy Vehicles: A Basic Uncertain Linguistic Information Bonferroni Mean-Based MCGDM Approach Considering Criteria Interaction

Author:

Yang Yi12ORCID,Hua Lei1,Jie Mengqi1,Shi Biao12

Affiliation:

1. School of Advanced Interdisciplinary Studies, Hunan University of Technology and Business, Changsha 410205, China

2. Xiangjiang Laboratory, Changsha 410205, China

Abstract

The continuous revolution of new energy technologies and the introduction of subsidy policies have promoted green consumers’ willingness to purchase new energy vehicles and automotive online service platforms have disclosed vehicle reputation and consumer satisfaction ratings information. However, due to issues such as uncertain data quality, large data volumes, and the emergence of positive reviews, the cost for potential car buyers to acquire useful decision-making knowledge has increased. Therefore, it is necessary to develop a scientific decision-making method that leverages the advantages of large-scale consumer satisfaction ratings to support potential car buyers in efficiently acquiring credible decision-making knowledge. In this context, the Bonferroni mean (BM) is a prominent operator for aggregating associated attribute information, while basic uncertain linguistic information (BULI) represents both information and its credibility in an integrated manner. This study proposes an embedded-criteria association learning BM operator tailored to large-scale consumer satisfaction ratings-driven scenarios and extends it to the BULI environment to address online ratings aggregation problems. Firstly, to overcome the limitations of BM with weighted interaction (WIBM) when dealing with independent criteria, we introduce an adjusted WIBM operator and extend it to the BULI environment as the BULIWIBM operator. We discuss fundamental properties such as idempotence, monotonicity, boundedness, and degeneracy. Secondly, addressing the constraints on interaction coefficients in BM due to subjective settings, we leverage expert knowledge to explore potential temporal characteristics hidden within large-scale consumer satisfaction ratings and develop a method for learning criteria and interaction coefficients. Finally, we propose a conversion method between user credibility-based ratings and BULI. By combining this method with the proposed adjusted BM operator, we construct a multi-criteria group decision-making (MCGDM) approach for product ranking driven by large-scale consumer satisfaction ratings. The effectiveness and scientific rigor of our proposed methods are demonstrated through solving a new energy vehicle selection problem on an online service platform and conducting comparative analysis. The case analysis and comparative analysis results demonstrate that the interaction coefficients, derived from expert knowledge and 42,520 user ratings, respectively, fell within the ranges of [0.2391, 0.7857] and [0.6546, 1.0]. The comprehensive interaction coefficient lay within the range of [0.4674, 0.7965], effectively mitigating any potential biases caused by subjective or objective factors. In comparison to online service platforms, our approach excels in distinguishing between alternative vehicles and significantly impacts their ranking based on credibility considerations.

Publisher

MDPI AG

Reference33 articles.

1. Guo, J. (Economic Information Daily, 2023). New Driving Force for the Development of ‘Digital’ Manufacturing Industry: A Front-Line Observation of 2023 China International Big Data Industry Expo, Economic Information Daily.

2. Multiple-Criteria Decision-Making Sorting Methods: A Survey;Alvarez;Expert Syst. Appl.,2021

3. A Consolidated MCDM Framework for Performance Assessment of Battery Electric Vehicles Based on Ranking Strategies;Ecer;Renew. Sust. Energ. Rev.,2021

4. TODIM and TOPSIS with Z-Numbers;Krohling;Front. Inf. Technol. Electron. Eng.,2019

5. A Fuzzy MCDM Approach to Support Customer-Centric Innovation in Virtual Reality (VR) Metaverse Headset Design;Kwok;Adv. Eng. Inform.,2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3