A Comparatively Experimental Study on the Performance and Emission Characteristics of a Diesel Engine Fueled with Tung Oil-Based Biodiesel Blends (B10, B20, B50)

Author:

Mu Zhiyue1,Fu Jianqin23,Zhou Feng12,Yuan Kainan2,Yu Juan1,Huang Dan1,Cui Zhuangping2,Duan Xiongbo3,Liu Jingping3

Affiliation:

1. College of Mechanical and Electrical Engineering, Central South University of Forestry and Technology, Changsha 410004, China

2. China Machinery International Engineering Design and Research Institute Co., Ltd., Changsha 410000, China

3. State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, Hunan University, Changsha 410082, China

Abstract

In this paper, the performance and emission characteristics of a diesel engine were investigated with varying ratios of tung oil-based biodiesel blends (B10, B20, and B50) and neat diesel under different operating conditions. The experimental results showed that the addition of biodiesel blends had different effects on engine power and torque depending on the blend ratio. B10 displayed a slight increase in power and torque, which increased by 1.9% and 6.6%. At the same time, B20 and B50 showed declines slightly. The fuel consumption rate increased slightly with an increasing percentage of biodiesel added. In general, all the blends exhibited significantly lower emissions of CO, NOX, HC, and smoke compared to neat diesel. B10 displayed the most notable reduction of CO emissions, with a 42.86% decrease at medium to high loads. NOX emissions of tung oil-based biodiesel blends were reduced at all load conditions except for B50. In addition, HC emissions were all reduced, especially for B20, which led to a 27.54% reduction at 50% load. Among all the tested blends, B50 showed the greatest decrease in smoke emissions of 38.05% compared to neat diesel at 2000 rpm. The research concluded that using biodiesel fuels from renewable resources, such as tung oil, presents a promising environmentally friendly alternative fuel option.

Funder

Hunan Provincial Department of Education Project, China

the Scientific Innovation Fund for Postgraduates of Central South University of Forestry and Technology

Hunan Provincial Natural Science Foundation of China

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3