A Peer-to-Peer Energy Trading Model for Optimizing Both Efficiency and Fairness

Author:

Kusatake Eiichi1,Imahori Mitsue1,Shinomiya Norihiko1

Affiliation:

1. Graduate School of Science and Engineering, Soka University, 1-236 Tangi-machi, Hachioji-shi 192-8577, Japan

Abstract

In recent years, there has been a growing global trend towards transitioning from centralized energy systems to distributed or decentralized models, with the aim of promoting the widespread utilization of renewable energy sources. As a result, the concept of direct energy trading among consumers has garnered considerable attention as a means to effectively harness the potential of distributed energy systems. However, in this decentralized trading scenario, certain consumers may encounter challenges in receiving electricity from their preferred suppliers due to limited supply capacities. As a result of this constraint, there is a reduction in the advantages enjoyed by consumers. While previous studies have predominantly focused on optimizing resource allocation efficiency, the issue of equitable consumer benefits has often been overlooked. Therefore, it is crucial to develop a trading mechanism that considers the preferences of market participants, in addition to balancing supply and demand. Such a mechanism aims to enhance both fairness and efficiency in the market. This paper introduces the formulation of a single-objective optimization and multi-objective optimization problem for an electricity market trading mechanism. To address this challenge, two single-objective algorithms and six evolutionary algorithms (EAs) are employed to solve the optimization problem. By analyzing the simulation results, this study demonstrates the efficacy of the chosen evolutionary algorithms (EAs) and a single-objective optimization approach in effectively optimizing both the utilization of resources and the equitable distribution of consumer benefits.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Reference26 articles.

1. The Role and Future of Fossil Fuel;Koyama;IEEJ Energy J. Spec. Issue,2017

2. (2021, December 15). Japan’s Roadmap to ’Beyond-Zero’ Carbon. Available online: https://www.meti.go.jp/english/policy/energy_environment/global_warming/roadmap/.

3. Toffler, A., and Toffler, H. (2006). Revolutionary Wealth, Knopf.

4. (2021, December 20). Japan’s FiP Renewables System Likely to Exclude Biomass. Available online: https://www.argusmedia.com/en/news/2112632-japans-fip-renewables-system-likely-to-exclude-biomass.

5. A system perspective to the deployment of flexibility through aggregator companies in the Netherlands;Lampropoulos;Energy Policy,2018

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3