Multi-Temporal and Multi-Frequency SAR Analysis for Forest Land Cover Mapping of the Mai-Ndombe District (Democratic Republic of Congo)

Author:

Haarpaintner JörgORCID,Hindberg HeidiORCID

Abstract

The European Space Agency’s (ESA) “SAR for REDD” project aims to support complementing optical remote sensing capacities in Africa with synthetic aperture radar (SAR) for Reducing Emissions from Deforestation and Forest Degradation (REDD). The aim of this study is to assess and compare Sentinel-1 C-band, ALOS-2 PALSAR-2 L-band and combined C/L-band SAR-based land cover mapping over a large tropical area in the Democratic Republic of Congo (DRC). The overall approach is to benefit from multi-temporal observations acquired from 2015 to 2017 to extract statistical parameters and seasonality of backscatters to improve forest land cover (FLC) classification. We investigate whether and to what extent the denser time series of C- band SAR can compensate for the L-band’s deeper vegetation penetration depth and known better FLC mapping performance. The supervised classification differentiates into forest, inundated forest, woody savannah, dry and wet grassland, and river swamps. Several feature combinations of statistical parameters from both, single and multi-frequency observations in a multivariate maximum-likelihood classification are compared. The FLC maps are reclassified into forest, savannah, and grassland (FSG) and validated with a systematic sampling grid of manual interpretations of very-high-resolution optical satellite data. Using the temporal variability of the dual-polarized backscatters, in the form of either wet/dry seasonal averages or using the statistical variance, in addition to the average backscatter, increased the classification accuracies by 4–5 percent points and 1–2 percent points for C- and L-band, respectively. For the FSG validation overall accuracies of 84.4%, 89.1%, and 90.0% were achieved for single frequency C- and L-band, and C/L-band combined, respectively. The resulting forest/non-forest (FNF) maps with accuracies of 90.3%, 92.2%, and 93.3%, respectively, are then compared to the Landsat-based Global Forest Change program’s and JAXA’s ALOS-1/2 based global FNF maps.

Funder

European Space Agency

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference52 articles.

1. CO2 emissions from forest loss

2. Tropical Forests and Climate Policy

3. 2015 Paris Agreement Englishhttps://unfccc.int/files/meetings/paris_nov_2015/application/pdf/paris_agreement_english_.pdf

4. REDD+ and a Green Economy: Opportunities for a Mutually Supportive Relationship, UN-REDD Programme Policy Brief 2012, Issue #01https://theredddesk.org/sites/default/files/resources/pdf/2012/unep_policy_brief.pdf

5. Measurement, Reporting and Verification for REDD+: Objectives, Capacities and Institutions;Herold,2009

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3