Numerical Investigation of Liquid Flow Behaviors through Closed Rough Fractures in the Self-Propped Shale Formation

Author:

Wang Qiqi,Chen Mian,Lv Jiaxin

Abstract

The surface morphology of fractures formed by hydraulic fracturing is usually rough. The roughness of the fracture surface is the main reason the actual fracture conductivity deviates from the ideal flat plate model result. In this paper, based on the three-dimensional reconfiguration of actual rough hydraulic fractures, a randomly generated geometric model of a micro-convex body with a rough fracture surface is used as an example of a hydraulic fracture in a shale reservoir. Assuming that the flow in the fracture conforms to the laminar flow pattern, the velocity and pressure fields of the fluid flow on the fracture surface are solved by the finite element method. The effects of micro-convex body size, uniformity, density, and shape on the non-uniform flow of the rough fracture surface are analyzed. The three-dimensional model shows that the average velocity is minimum in the near fully closed fracture. The fluid bypasses the micro-convex body during the flow, forming multiple nonlinear flow regions. The streamlined tortuosity increases with the density and size of the micro-convex bodies and depends on the distribution of the micro-convex areas. The bypassing accelerates the pressure drop and slows down the flow rate. The greater the degree of micro-convex body aggregation, the more significant the decrease in flow velocity. The more locations where the curvature of the micro-convex edge is not zero, the more nonlinear flow zones can significantly reduce the flow rate and thus affect oil and gas production. Targeted optimization of the proppant placement pattern to make the trailing part of the micro-convex body as close to streamlined as possible can reduce the nonlinear flow area and slow down the flow rate reduction.

Funder

National Key Research and Development Program of China

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3