Design and Control of Three-Phase Power System with Wind Power Using Unified Power Quality Conditioner

Author:

Mahdi Dheyaa IedORCID,Gorel GoksuORCID

Abstract

The Unified Power Quality Conditioner (UPQC) is one of the Custom Power devices (CP), and it mitigates both load current and supply voltage problems (voltage swells, sags, harmonics, etc.) simultaneously. By using CP, we are getting more familiar with renewable energy’s high penetration on the electrical grid because of its intermittent nature, which causes power flection. We are also using powered electronic devices, and non-linear loads produce harmonics that affect the voltage and current waveform. In this paper, a UPQC will be used with a sensitive load that is connected to a grid (grid–wind turbine) power system. The UPQC will operate under different disturbances such as phase-to-ground fault, non-linear load on the grid side, and non-linear load in parallel with the sensitive load, using pulse-width modulation and hysteresis as switching techniques. Simulation results using MATLAB/Simulink are used to compare the two pulsing-generating techniques and show that electrical power is continuously fed to the load in all disturbances with total harmonic distortion (THD) less than 5% for voltage and 4.5% for current.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Reference32 articles.

1. Distribution energy generation using renewable energy sources;Lakshmi;Proceedings of the 2020 IEEE India Council International Subsections Conference (INDISCON),2020

2. Integration of Solar Photovoltaic Distributed Generators in Distribution Networks Based on Site’s Condition

3. Application of hybrid facts devices in DFIG based wind energy system for LVRT capability enhancements;Ganthia;J. Mech. Cont. Math. Sci.,2020

4. Harmonic active filtering and impedance-based stability analysis in offshore wind power plants;Dhua;Proceedings of the 16th Wind Integration Workshop,2017

5. Passive Filters Applied to a Small Wind Turbine Based System

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3