An Efficient Ground Moving Target Imaging Method for Synthetic Aperture Radar Based on Scaled Fourier Transform and Scaled Inverse Fourier Transform

Author:

Zhang Xin12ORCID,Zhu Haoyu12,Liu Ruixin12,Wan Jun12,Chen Zhanye34ORCID

Affiliation:

1. School of Microelectronics and Communication Engineering, Chongqing University, Chongqing 400044, China

2. Chongqing Key Laboratory of Space Information Network and Intelligent Information Fusion, Chongqing University, Chongqing 400044, China

3. State Key Laboratory of Millimeter Waves, Southeast University, Nanjing 210096, China

4. Institute of Electromagnetic Space, Southeast University, Nanjing 210096, China

Abstract

The unknown relative motions between synthetic aperture radar (SAR) and a ground moving target will lead to serious range cell migration (RCM) and Doppler frequency spread (DFS). The energy of the moving target will defocus, given the effect of the RCM and DFS. The moving target will easily produce Doppler ambiguity, due to the low pulse repetition frequency of radar, and the Doppler ambiguity complicates the corrections of the RCM and DFS. In order to address these issues, an efficient ground moving target focusing method for SAR based on scaled Fourier transform and scaled inverse Fourier transform is presented. Firstly, the operations based on the scaled Fourier transform and scaled inverse Fourier transforms are presented to focus the moving targets in consideration of Doppler ambiguity. Subsequently, in accordance with the detailed analysis of multiple target focusing, the spurious peak related to the cross term is removed. The proposed method can accurately eliminate the DFS and RCM, and the well-focused result of the moving target can be achieved under the complex Doppler ambiguity. Then, the blind speed sidelobe can be further avoided. The presented method has high computational efficiency without the step of parameter search. The simulated and measured SAR data are provided to demonstrate the effectiveness of the developed method.

Funder

National Natural Science Foundation of China

Key Research and Development Program of Jiangsu Province

Opening Project of Guangxi Key Laboratory of Wireless Wideband Communication and Signal Processing

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3