Integration of High-Rate GNSS and Strong Motion Record Based on Sage–Husa Kalman Filter with Adaptive Estimation of Strong Motion Acceleration Noise Uncertainty

Author:

Zhang Yuanfan1ORCID,Nie Zhixi1ORCID,Wang Zhenjie1ORCID,Zhang Guohong2ORCID,Shan Xinjian2

Affiliation:

1. College of Oceanography and Space Informatics, China University of Petroleum, Qingdao 266580, China

2. Key Laboratory of Earthquake Dynamics, Institute of Geology, China Earthquake Administration, Beijing 100029, China

Abstract

A strong motion seismometer is a kind of inertial sensor, and it can record middle- to high-frequency ground accelerations. The double-integration from acceleration to displacement amplifies errors caused by tilt, rotation, hysteresis, non-linear instrument response, and noise. This leads to long-period, non-physical baseline drifts in the integrated displacements. GNSS enables the direct observation of the ground displacements, with an accuracy of several millimeters to centimeters and a sample rate of 1 Hz to 50 Hz. Combining GNSS and a strong motion seismometer, one can obtain an accurate displacement series. Typically, a Kalman filter is adopted to integrate GNSS displacements and strong motion accelerations, using the empirical values of noise uncertainty. Considering that there are significantly different errors introduced by the above-mentioned tilt, rotation, hysteresis, and non-linear instrument response at different stations or at different times at the same station, it is inappropriate to employ a fixed noise uncertainty for strong motion accelerations. In this paper, we present a Sage–Husa Kalman filter, where the noise uncertainty of strong motion acceleration is adaptively estimated, to integrate GNSS and strong motion acceleration for obtaining the displacement series. The performance of the proposed method was validated by a shake table simulation experiment and the GNSS/strong motion co-located stations collected during the 2023 Mw 7.8 and Mw 7.6 earthquake doublet in southeast Turkey. The experimental results show that the proposed method enhances the adaptability to the variation of strong motion accelerometer noise level and improves the precision of integrated displacement series. The displacement derived from the proposed method was up to 28% more accurate than those from the Kalman filter in the shake table test, and the correlation coefficient with respect to the references arrived at 0.99. The application to the earthquake event shows that the proposed method can capture seismic waveforms at a promotion of 46% and 23% in the horizontal and vertical directions, respectively, compared with the results of the Kalman filter.

Funder

National Natural Science Foundation of China

Shandong Provincial Natural Science Foundation

Fundamental Research Funds for the Central Universities

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3