Abstract
Monitoring cattle behaviour is core to the early detection of health and welfare issues and to optimise the fertility of large herds. Accelerometer-based sensor systems that provide activity profiles are now used extensively on commercial farms and have evolved to identify behaviours such as the time spent ruminating and eating at an individual animal level. Acquiring this information at scale is central to informing on-farm management decisions. The paper presents the development of a Convolutional Neural Network (CNN) that classifies cattle behavioural states (‘rumination’, ‘eating’ and ‘other’) using data generated from neck-mounted accelerometer collars. During three farm trials in the United Kingdom (Easter Howgate Farm, Edinburgh, UK), 18 steers were monitored to provide raw acceleration measurements, with ground truth data provided by muzzle-mounted pressure sensor halters. A range of neural network architectures are explored and rigorous hyper-parameter searches are performed to optimise the network. The computational complexity and memory footprint of CNN models are not readily compatible with deployment on low-power processors which are both memory and energy constrained. Thus, progressive reductions of the CNN were executed with minimal loss of performance in order to address the practical implementation challenges, defining the trade-off between model performance versus computation complexity and memory footprint to permit deployment on micro-controller architectures. The proposed methodology achieves a compression of 14.30 compared to the unpruned architecture but is nevertheless able to accurately classify cattle behaviours with an overall F1 score of 0.82 for both FP32 and FP16 precision while achieving a reasonable battery lifetime in excess of 5.7 years.
Funder
Horizon 2020
Biotechnology and Biological Sciences Research Council
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Reference54 articles.
1. AHDB Dairy Statisticshttps://ahdb.org.uk/dairy
2. Expression and detection of estrus in dairy cows: the role of new technologies
3. Estrus detection tools and their applicability in cattle: Recent and perspectival situation;Roelofs;Anim. Reprod.,2015
4. Silent Herdsman/Better Performing Cows,2012
Cited by
31 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献