DRL-FVRestore: An Adaptive Selection and Restoration Method for Finger Vein Images Based on Deep Reinforcement

Author:

Gao Ruoran,Lu HuiminORCID,Al-Azzawi Adil,Li Yupeng,Zhao Chengcheng

Abstract

Finger vein recognition has become a research hotspot in the field of biometrics due to its advantages of non-contact acquisition, unique information, and difficulty in terms of forging or pirating. However, in the real-world application process, the extraction of image features for the biometric remains a significant challenge when the captured finger vein images suffer from blur, noise, or missing feature information. To address the above challenges, we propose a novel deep reinforcement learning-based finger vein image recovery method, DRL-FVRestore, which trained an agent that adaptively selects the appropriate restoration behavior according to the state of the finger vein image, enabling continuous restoration of the image. The behaviors of image restoration are divided into three tasks: deblurring restoration, defect restoration, and denoising and enhancement restoration. Specifically, a DeblurGAN-v2 based on the Inception-Resnet-v2 backbone is proposed to achieve deblurring restoration of finger vein images. A finger vein feature-guided restoration network is proposed to achieve defect image restoration. The DRL-FVRestore is proposed to deal with multi-image problems in complex situations. In this paper, extensive experimental results are conducted based on using four publicly accessible datasets. The experimental results show that for restoration with single image problems, the EER values of the deblurring network and damage restoration network are reduced by an average of 4.31% and 1.71%, respectively, compared to other methods. For images with multiple vision problems, the EER value of the proposed DRL-FVRestore is reduced by an average of 3.98%.

Funder

Jilin Province Science and Technology Department

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3