An Obstacle Detection Algorithm Suitable for Complex Traffic Environment

Author:

Luo Guantai,Chen Xinwei,Lin Wenwei,Dai Jie,Liang Peidong,Zhang ChentaoORCID

Abstract

For the task of obstacle detection in a complex traffic environment, this paper proposes a road-free space extraction and obstacle detection method based on stereo vision. The proposed method combines the advantages of the V-disparity image and the Stixel method. Firstly, the depth information and the V-disparity image are calculated according to the disparity image. Then, the free space on the road surface is calculated through the RANSAC algorithm and dynamic programming (DP) algorithm. Furthermore, a new V-disparity image and a new U-disparity image are calculated by the disparity image after removing the road surface information. Finally, the height and width of the obstacles on the road are extracted from the new V-disparity image and U-disparity image, respectively. The detection of obstacles is realized by the height and width information of obstacles. In order to verify the method, we adopted the object detection benchmarks and road detection benchmarks of the KITTI dataset for verification. In terms of the accuracy performance indicators quality, detection rate, detection accuracy, and effectiveness, the method in this paper reaches 0.820, 0.863, 0.941, and 0.900, respectively, and the time consumption is only 5.145 milliseconds. Compared with other obstacle detection methods, the detection accuracy and real-time performance in this paper are better. The experimental results show that the method has good robustness and real-time performance for obstacle detection in a complex traffic environment.

Funder

Industrial Robot Application of Fujian University Engineering Research Center, Minjiang Uni-versity under Grant No. MJUKF-IRA1903

Publisher

MDPI AG

Subject

Automotive Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3