Improving the Tribological Properties and Biocompatibility of Zr-Based Bulk Metallic Glass for Potential Biomedical Applications

Author:

Sawyer Victoria,Tao Xiao,Dong Huan,Dashtbozorg BehnamORCID,Li XiaoyingORCID,Sammons Rachel,Dong Han-Shan

Abstract

Zr-based bulk metallic glasses (Zr-BMGs) are potentially the next generation of metallic biomaterials for orthopaedic fixation devices and joint implants owing to their attractive bulk material properties. However, their poor tribological properties and long-term biocompatibility present major concerns for orthopaedic applications. To this end, a novel surface modification technology, based on ceramic conversion treatment (CCT) in an oxidising medium between the glass transition temperature and the crystallisation temperature, has been developed to convert the surface of commercially available Zr44Ti11Cu10Ni11Be25 (Vitreloy 1b) BMG into ceramic layers. The engineered surfaces were fully characterised by in-situ X-ray diffraction, glow-discharge optical emission spectroscopy, scanning electron microscopy, transmission electron microscopy, and scanning transmission electron microscopy. The mechanical, chemical, and tribological properties were evaluated respectively by nano-indentation, electrochemical corrosion testing, tribological testing and the potential biocompatibility assessed by a cell proliferation assay. The results have demonstrated that after CCT at 350 °C for 40 h and at 380 °C for 4.5 h the original surfaces were converted into to a uniform 35–55-nm-thick oxide layer (with significantly reduced Ni and Cu concentration) followed by a 200–400-nm-thick oxygen-diffusion hardened case. The surface nano hardness was increased from 7.75 ± 0.36 to 18.32 ± 0.21 GPa, the coefficient of friction reduced from 0.5–0.6 to 0.1–0.2 and the wear resistance improved by more than 60 times. After 24 h of contact, SAOS-2 human osteoblast-like cells had increased surface coverage from 18% for the untreated surface to 46% and 54% for the 350 °C/40 h and 380 °C/4.5 h treated surfaces, respectively. The significantly improved tribological properties and biocompatibility have shown the potential of the ceramic conversion treated Zr-BMG for orthopaedic applications.

Publisher

MDPI AG

Subject

General Materials Science

Reference43 articles.

1. Metals as Biomaterials;Helsen,1998

2. Metallic implant biomaterials

3. Handbook of Active Materials for Medical Devices;Lantada,2011

4. The biocompatibility of materials for internal fixation of fractures

5. Levels of systemic metal ions in patients with intramedullary nails

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3