Tape-Shaped, Multiscale, and Continuous-Readable Fiducial Marker for Indoor Navigation and Localization Systems

Author:

Neto Benedito S. R.1ORCID,Araújo Tiago D. O.2ORCID,Meiguins Bianchi S.3ORCID,Santos Carlos G. R.3ORCID

Affiliation:

1. Departamento de Ensino, Pesquisa, Pos-Graduação, Inovação e Extensão, Campus Cametá, Instituto Federal do Pará (IFPA), Cametá 68400-000, Pará, Brazil

2. Escola Superior Aveiro Norte (ESAN), Universidade de Aveiro, 3810-193 Aveiro, Portugal

3. Programa de Pós-Graduação em Ciência da Computação (PPGCC), Universidade Federal do Pará (UFPA), Belém 66075-110, Pará, Brazil

Abstract

The present study proposes a fiducial marker for location systems that uses computer vision. The marker employs a set of tape-shaped markers that facilitate their positioning in the environment, allowing continuous reading to cover the entire perimeter of the environment and making it possible to minimize interruptions in the location service. Because the marker is present throughout the perimeter of the environment, it presents hierarchical coding patterns that allow it to be robust against multiple detection scales. We implemented an application to help the user generate the markers with a floor plan image. We conducted two types of tests, one in a 3D simulation environment and one in a real-life environment with a smartphone. The tests made it possible to measure the performance of the tape-shaped marker with readings at multiple distances compared to ArUco, QRCode, and STag with detections at distances of 10 to 0.5 m. The localization tests in the 3D environment analyzed the time of marker detection during the journey from one room to another in positioning conditions (A) with the markers positioned at the baseboard of the wall, (B) with the markers positioned at camera height, and (C) with the marker positioned on the floor. The localization tests in real conditions allowed us to measure the time of detections in favorable conditions of detections, demonstrating that the tape-shaped-marker-detection algorithm is not yet robust against blurring but is robust against lighting variations, difficult angle displays, and partial occlusions. In both test environments, the marker allowed for detection at multiple scales, confirming its functionality.

Funder

Higher Education Personnel Improvement Coordination

Federal University of Pará

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3