GNSS-RO Deep Refraction Signals from Moist Marine Atmospheric Boundary Layer (MABL)

Author:

Wu Dong L.ORCID,Gong JieORCID,Ganeshan Manisha

Abstract

The marine atmospheric boundary layer (MABL) has a profound impact on sensible heat and moisture exchanges between the surface and the free troposphere. The goal of this study is to develop an alternative technique for retrieving MABL-specific humidity (q) using GNSS-RO data in deep-refracted signals. The GNSS-RO signal amplitude (i.e., signal-to-noise ratio or SNR) at the deep straight-line height (HSL) was been found to be strongly impacted by water vapor within the MABL. This study presents a statistical analysis to empirically relate the normalized SNR (SRO) at deep HSL to the MABL q at 950 hPa (~400 m). When compared to the ERA5 reanalysis data, a good linear q–SRO relationship is found with the deep HSL SRO data, but careful treatments of receiver noise, SNR normalization, and receiver orbital altitude are required. We attribute the good q–SRO correlation to the strong refraction from a uniform, horizontally stratiform and dynamically quiet MABL water vapor layer. Ducting and diffraction/interference by this layer help to enhance the SRO amplitude at deep HSL. Potential MABL water vapor retrieval can be further developed to take advantage of a higher number of SRO measurements in the MABL compared to the Level-2 products. A better sampled diurnal variation of the MABL q is demonstrated with the SRO data over the Southeast Pacific (SEP) and the Northeast Pacific (NEP) regions, which appear to be consistent with the low cloud amount variations reported in previous studies.

Funder

NASA’s Global Navigation Satellite System Research program

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

Reference47 articles.

1. An Introduction to Boundary Layer Meteorology;Stull,1988

2. The Epic 2001 Stratocumulus Study

3. Parameterization of the Atmospheric Boundary Layer: A View from Just Above the Inversion

4. Shallow Clouds, Water Vapor, Circulation, and Climate Sensitivity;Pincus,2017

5. Marine boundary layer clouds at the heart of tropical cloud feedback uncertainties in climate models

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. GNSS Signal Jamming as Observed From Radio Occultation;IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing;2024

2. On the Atmospheric Solitary Waves Propagation Over Bengkalis Island;Springer Proceedings in Physics;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3