PM Dimensional Characterization in an Urban Mediterranean Area: Case Studies on the Separation between Fine and Coarse Atmospheric Aerosol

Author:

Manigrasso Maurizio,Soggiu Maria EleonoraORCID,Settimo GaetanoORCID,Inglessis Marco,Protano CarmelaORCID,Vitali MatteoORCID,Avino PasqualeORCID

Abstract

Fine particulate matter (PM) is object of particular attention due to its health effects. It is currently regulated by adopting PM2.5 as an indicator to control anthropogenic combustion emissions. Therefore, it is crucial to collect aerosol samples representative of such sources, without including PM from natural sources. Thus, a clean separation between coarse and fine mode aerosol should be set. With this purpose, aerosol size mass distribution was taken in the aerodynamic diameter range from 0.5 to 10 µm. In comparison with a base scenario, characterized by local pollution sources, three case studies were considered, involving desert dust advection, sea salt advection and forest fire aerosol from a remote area. In the base scenario, PM2.5 represented a suitable fine-mode indicator, whereas it was considerably affected by coarse PM in case of desert dust and sea salt aerosol advection. Such interference was considerably reduced by setting the fine/coarse separation at 1.0 µm. Such separation underrepresented fine PM from forest fire long-range transport, nonetheless in the case studies considered, PM1 represented the best indicator of fine aerosol since less affected by coarse natural sources. The data presented clearly support the results from other studies associating the health effects of PM2.5 to PM1, rather than to PM1–2.5. Overall, there is a need to reconsider PM2.5 as an indicator of fine atmospheric aerosol.

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

Reference65 articles.

1. Council Directive 1999/30/EC of 22 April 1999 Relating to Limit Values for Sulphur Dioxide, Nitrogen Dioxide and Oxides of Nitrogen, Particulate Matter and Lead in Ambient Airhttps://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:31999L0030&from=EN

2. Long-term exposure to PM and all-cause and cause-specific mortality: A systematic review and meta-analysis

3. Potential mechanisms of adverse pulmonary and cardiovascular effects of particulate air pollution (PM10)

4. The mechanisms of air pollution and particulate matter in cardiovascular diseases

5. Outdoor particulate matter (PM10) exposure and lung cancer risk in the EAGLE study

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3