Combining Sun-Photometer, PM Monitor and SMPS to Inverse the Missing Columnar AVSD and Analyze Its Characteristics in Central China

Author:

Miao Ao,Jin ShikuanORCID,Ma Yingying,Liu Boming,Jiang Nan,He Wenzhuo,Qian Xiaokun,Zheng Yifan

Abstract

Columnar aerosol volume size distribution (AVSD) is an important atmospheric parameter that shows aerosol microphysical properties and can be used to analyze the impact of aerosols on the radiation budget balance, as well as regional climate effects. Usually, columnar AVSD can be obtained by using a sun photometer, but its observation conditions are relatively strict, and the columnar AVSD will be missing in cloudy or hazy weather due to cloud cover and other factors. This study introduces a novel algorithm for inversion of missing columnar AVSD under haze periods by using a machine learning approach and other ground-based observations. The principle is as follows. We are based on joint observational experiments. Since the scanning mobility particle sizer (SMPS) and particulate matter (PM) monitor sample the surface data, they can be stitched together to obtain the surface AVSD according to their observation range. Additionally, the sun-photometer scans the whole sky, so it can obtain columnar AVSD and aerosol optical depth (AOD). Then we use the back propagation neural network (BPNN) model to establish the relationship between the surface AVSD and the columnar AVSD and add AOD as a constraint. Next, the model is trained with the observation data of the same period. After the model training is completed, the surface AVSD and AOD can be used to invert the missing columnar AVSD during the haze period. In experiments on the 2015 dataset, the results show that the correlation coefficient and root mean square error between our model inversion results and the original sun photometer observations were 0.967 and 0.008 in winter, 0.968 and 0.010 in spring, 0.969 and 0.013 in summer, 0.972 and 0.007 in autumn, respectively. It shows a generally good performance that can be applied to the four seasons. Furthermore, the method was applied to fill the missing columnar AVSD of Wuhan, a city in central China, under adverse weather conditions. The final results were shown to be consistent with the climatic characteristics of Wuhan. Therefore, it can indeed solve the problem that sun photometer observations are heavily dependent on weather conditions, contributing to a more comprehensive study of the effects of aerosols on climate and radiation balance.

Funder

National Key R&D Program of China

National Natural Science Foundation of China

the Key R&D projects in Hubei Province

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3