Spatiotemporal Variations of Chinese Terrestrial Ecosystems in Response to Land Use and Future Climate Change

Author:

Li Shuaishuai,Zhang JiahuaORCID,Henchiri Malak,Cao Dan,Zhang Sha,Bai Yun,Yang Shanshan

Abstract

Terrestrial ecosystems in China are threatened by land use and future climate change. Understanding the effects of these changes on vegetation and the climate-vegetation interactions is critical for vegetation preservation and mitigation. However, land-use impacts on vegetation are neglected in terrestrial ecosystems exploration, and a deep understanding of land-use impacts on vegetation dynamics is lacking. Additionally, few studies have examined the contribution of vegetation succession to changes in vegetation dynamics. To fill the above gaps in the field, the spatiotemporal distribution of terrestrial ecosystems under the current land use and climate baseline (1970–2000) was examined in this study using the Comprehensive Sequential Classification System (CSCS) model. Moreover, the spatiotemporal variations of ecosystems and their succession under future climate scenarios (the 2030s–2080s) were quantitatively projected and compared. The results demonstrated that under the current situation, vegetation without human disturbance was mainly distributed in high elevation regions and less than 10% of the national area. For future vegetation dynamics, more than 58% of tundra and alpine steppe would shrink. Semidesert would respond to climate change with an expansion of 39.49 × 104 km2, including the succession of the steppe to semidesert. Although some advancement of the temperate forest at the expense of substantial dieback of tundra and alpine steppe is expected to occur, this century would witness a considerable shrinkage of them, especially in RCP8.5, at approximately 55.06 × 104 km2. Overall, a warmer and wetter climate would be conducive to the occurrence and development of the CSCS ecosystems. These results offer new insights on the potential ecosystem response to land use and climate change over the Chinese domain, and on creating targeted policies for effective adaptation to these changes and implementation of ecosystem protection measures.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3