Observed Climatology and Trend in Relative Humidity, CAPE, and CIN over India

Author:

Khan Pathan Imran,Ratnam Devanaboyina Venkata,Prasad Perumal,Basha Ghouse,Jiang Jonathan H.ORCID,Shaik RehanaORCID,Ratnam Madineni Venkat,Kishore PangaluruORCID

Abstract

Water vapor is the most dominant greenhouse gas in the atmosphere and plays a critical role in Earth’s energy budget and hydrological cycle. This study aims to characterize the long-term seasonal variation of relative humidity (RH), convective available potential energy (CAPE), and convective inhibition (CIN) from surface and radiosonde observations from 1980–2020. The results show that during the monsoon season, very high RH values are depicted while low values are depicted during the pre-monsoon season. West Coast stations represent large RH values compared to other stations throughout the year. Irrespective of the season, the coastal regions show higher RH values during monsoon season. Regardless of season, the coastal regions have higher RH values during the monsoon season. During the pre-monsoon season, the coastal region has high RH values, whereas other regions have high RH values during the monsoon season. The rate of increase in RH in North-West India is 5.4%, followed by the West Coast, Central, and Southern parts of India. An increase in water vapor leads to raised temperature, which alters the instability conditions. In terms of seasonal variation, our findings show that CAPE follows a similar RH pattern. CAPE increases sharply in Central India and the West Coast region, while it declines in South India. Opposite features are observed in CIN with respect to CAPE variability over India. The results of the study provide additional evidence with respect to the role of RH as an influencing factor for an increase in CAPE over India.

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3