Apportionment of Vehicle Fleet Emissions by Linear Regression, Positive Matrix Factorization, and Emission Modeling

Author:

Wang XiaoliangORCID,Chen L.-W. AntonyORCID,Lu Minggen,Ho Kin-FaiORCID,Lee Shun-ChengORCID,Ho Steven Sai HangORCID,Chow Judith C.,Watson John G.

Abstract

Real-world emission factors for different vehicle types and their contributions to roadside air pollution are needed for air-quality management. Tunnel measurements have been used to estimate emission factors for several vehicle types using linear regression or receptor-based source apportionment. However, the accuracy and uncertainties of these methods have not been sufficiently discussed. This study applies four methods to derive emission factors for different vehicle types from tunnel measurements in Hong Kong, China: (1) simple linear regressions (SLR); (2) multiple linear regressions (MLR); (3) positive matrix factorization (PMF); and (4) EMission FACtors for Hong Kong (EMFAC-HK). Separable vehicle types include those fueled by liquefied petroleum gas (LPG), gasoline, and diesel. PMF was the most useful, as it simultaneously seeks source profiles and source contributions. Diesel-, gasoline-, and LPG-fueled vehicle emissions accounted for 52%, 10%, and 5% of PM2.5 mass, respectively, while ammonium sulfate (~20%), ammonium nitrate (6%), and road dust (7%) were also large contributors. MLR exhibited the highest relative uncertainties, typically over twice those determined by SLR. EMFAC-HK has the lowest relative uncertainties due to its assumption of a single average emission factor for each pollutant and each vehicle category under specific conditions. The relative uncertainties of SLR and PMF are comparable.

Funder

Health Effects Institute

Research Grants Council of Hong Kong Government

National Key Research and Development Program of China

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3