Abstract
Alkylated polycyclic aromatic hydrocarbons (alkyl-PAHs), dibenzothiophenes (DBTs), and unsubstituted polycyclic aromatic hydrocarbons (PAHs) are naturally present in fossil fuels. Thus, they can be considered as candidates for markers of pollution from petrogenic emissions such as those from traffic. Consequently, ambient air concentrations of alkyl-PAHs, DBTs, and PAHs at selected ambient air monitoring sites of various types (residential, near-road, urban-industrial, agricultural) in Montréal, Toronto, Hamilton, Edmonton, and Simcoe, were evaluated from 2015 to 2016 to study their profiles, trends, and assess potential primary emission source types. Alkyl-PAHs were the prevailing species at all sites and were most elevated at the high-traffic impacted near-road site in Toronto which was also accompanied by the highest unsubstituted PAH concentrations. Comparison of relative abundance ratios of alkyl-PAH and PAH groupings suggests that the profile differences amongst sites were small. Source attribution with cluster grouping suggested similar emission sources of alkyl-PAH and PAH at all sites, with the exception of Hamilton which was particularly impacted by additional emission sources of PAHs. The Principal Component Analysis further indicated distinct PAC profiles at HWY401 and HMT that have the same variability of “heavy PACs” but differ in “medium mass PAHs” sources. Seasonality affected the bulk species trends (alkylated naphthalenes, fluorenes, and phenanthrenes/anthracenes), especially at sites with lower concentrations of these species. This study findings confirm a notable contribution of traffic emissions to alkyl-PAH levels in urban ambient air at the studied Canadian sites, and show that enhanced speciation of alkyl-PAHs provides more data on ambient air quality and additional health risks, and can also help distinguish petrogenic-influenced sources from other sources.
Subject
Atmospheric Science,Environmental Science (miscellaneous)
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献