Assessment and Characterization of Alkylated PAHs in Selected Sites across Canada

Author:

Wnorowski AndrzejORCID,Harnish David,Jiang Ying,Celo Valbona,Dabek-Zlotorzynska Ewa,Charland Jean-Pierre

Abstract

Alkylated polycyclic aromatic hydrocarbons (alkyl-PAHs), dibenzothiophenes (DBTs), and unsubstituted polycyclic aromatic hydrocarbons (PAHs) are naturally present in fossil fuels. Thus, they can be considered as candidates for markers of pollution from petrogenic emissions such as those from traffic. Consequently, ambient air concentrations of alkyl-PAHs, DBTs, and PAHs at selected ambient air monitoring sites of various types (residential, near-road, urban-industrial, agricultural) in Montréal, Toronto, Hamilton, Edmonton, and Simcoe, were evaluated from 2015 to 2016 to study their profiles, trends, and assess potential primary emission source types. Alkyl-PAHs were the prevailing species at all sites and were most elevated at the high-traffic impacted near-road site in Toronto which was also accompanied by the highest unsubstituted PAH concentrations. Comparison of relative abundance ratios of alkyl-PAH and PAH groupings suggests that the profile differences amongst sites were small. Source attribution with cluster grouping suggested similar emission sources of alkyl-PAH and PAH at all sites, with the exception of Hamilton which was particularly impacted by additional emission sources of PAHs. The Principal Component Analysis further indicated distinct PAC profiles at HWY401 and HMT that have the same variability of “heavy PACs” but differ in “medium mass PAHs” sources. Seasonality affected the bulk species trends (alkylated naphthalenes, fluorenes, and phenanthrenes/anthracenes), especially at sites with lower concentrations of these species. This study findings confirm a notable contribution of traffic emissions to alkyl-PAH levels in urban ambient air at the studied Canadian sites, and show that enhanced speciation of alkyl-PAHs provides more data on ambient air quality and additional health risks, and can also help distinguish petrogenic-influenced sources from other sources.

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3