Vertical Distribution of Atmospheric Ice Nucleating Particles in Winter over Northwest China Based on Aircraft Observations

Author:

Wu Jiaxin,Yin YanORCID,Chen Kui,He Chuan,Jiang Hui,Zheng Bohua,Li Bin,Li Yuanyuan,Lv YiyingORCID

Abstract

The concentration of ice nucleating particles (INPs) in the cloud layer affects cloud processes more importantly than at the ground level. To make up for deficiencies in the observation of the vertical distribution of INPs over different background regions of China, airborne sampling of INPs was carried out at the altitudes of 2000–5500 m over Turpan, Xinjiang, northwest China on 29 December 2019, and the samples were analyzed in a static vacuum water vapor diffusion chamber. The sources and relationships of the INPs with meteorological conditions and the variation of the concentrations of aerosol particles of different sizes were explored. The results indicate that the concentration of INPs varies from 0.25 to 15.7 L−1 when the nucleation temperature changes from −17 to −26 °C and the relative humidity with respect to water (RHw) varies from 95 to 105%. The existence of an inversion layer near the planetary boundary layer (PBL) inhibits the vertical transport of aerosols, thus affecting the vertical distribution of INP concentration. INPs in the free atmosphere mainly originate from fine-mode aerosol particles transported from long distances by westerly winds and do not change significantly with height. The air mass in the PBL is short-range transported, and the INP concentration reaches 15.7 L−1 at T =−26 °C and RHw = 105%, which is obviously higher than that above the PBL. The analyses provide evidence that the meteorological conditions played an important part in regulating the vertical distribution of INPs.

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3