A Suitable Model for Spatiotemporal Particulate Matter Concentration Prediction in Rural and Urban Landscapes, Thailand

Author:

Tongprasert Pirada,Ongsomwang SuwitORCID

Abstract

Spatiotemporal particulate matter (PM) concentration prediction using MODIS AOD with significant PM factors in rural and urban landscapes in Thailand is necessary for public health and has been complicated by the limitations of PM monitoring stations. The research objectives were (1) to identify significant factors affecting PM10 concentrations in rural landscapes and PM2.5 in urban landscapes; (2) to predict spatiotemporal PM10 and PM2.5 concentrations using geographically weighted regression (GWR) and mixed-effect model (MEM), and (3) to evaluate a suitable spatiotemporal model for PM10 and PM2.5 concentration prediction and validation. The research methodology consisted of four stages: data collection and preparation, the identification of significant spatiotemporal factors affecting PM concentrations, the prediction of spatiotemporal PM concentrations, and a suitable spatiotemporal model for PM concentration prediction and validation. As a result, the predicted PM10 concentrations using the GWR model varied from 50.53 to 85.79 µg/m3 and from 36.92 to 51.32 µg/m3 in winter and summer, while the predicted PM10 concentrations using the MEM model varied from 50.68 to 84.59 µg/m3 and from 37.08 to 50.81 µg/m3 in both seasons. Likewise, the PM2.5 concentration prediction using the GWR model varied from 25.33 to 44.37 µg/m3 and from 16.69 to 24.04 µg/m3 in winter and summer, and the PM2.5 concentration prediction using the MEM model varied from 25.45 to 44.36 µg/m3 and from 16.68 and 23.75 µg/m3 during the two seasons. Meanwhile, according to Thailand and U.S. EPA standards, the monthly air quality index (AQI) classifications of the GWR and MEM were similar. Nevertheless, the derived average corrected Akaike Information Criterion (AICc) values of the GWR model for PM10 and PM2.5 predictions during both seasons were lower than that of the MEM model. Therefore, the GWR model was chosen as a suitable model for spatiotemporal PM10 and PM2.5 concentration predictions. Furthermore, the result of spatial correlation analysis for GWR model validation based on a new dataset provided average correlation coefficient values for PM10 and PM2.5 concentration predictions with a higher than the expected value of 0.5. Subsequently, the GWR model with significant monthly and seasonal factors could predict spatiotemporal PM 10 and PM2.5 concentrations in rural and urban landscapes in Thailand.

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3