Abundance, Source Apportionment and Health Risk Assessment of Polycyclic Aromatic Hydrocarbons and Nitro-Polycyclic Aromatic Hydrocarbons in PM2.5 in the Urban Atmosphere of Singapore

Author:

Wang YanORCID,Zhang Hao,Zhang XuanORCID,Bai PengchuORCID,Zhang Lulu,Huang Sim Joo,Pointing Stephen Brian,Nagao SeiyaORCID,Chen Bin,Toriba Akira,Tang NingORCID

Abstract

In this study, the levels of fine particulate matter (PM2.5), polycyclic aromatic hydrocarbons (PAHs) and nitro-PAHs (NPAHs) in PM2.5 samples were determined from 2020 to 2021 in Singapore. For analysis convenience, the sampling period was classified according to two monsoon periods and the inter-monsoon period. Considering Singapore’s typically tropical monsoon climate, the four seasons were divided into the northeast monsoon season (NE), southwest monsoon season (SW), presouthwest monsoon season (PSW) and prenortheast monsoon season (PNE)). The PM2.5 concentration reached 17.1 ± 8.38 μg/m3, which was slightly higher than that in 2015, and the average PAH concentration continuously declined during the sampling period compared to that reported in previous studies in 2006 and 2015. This is the first report of NPAHs in Singapore indicating a concentration of 13.1 ± 10.7 pg/m3. The seasonal variation in the PAH and NPAH concentrations in PM2.5 did not obviously differ owing to the unique geographical location and almost uniform climate changes in Singapore. Diagnostic ratios revealed that PAHs and NPAHs mainly originated from local vehicle emissions during all seasons. 2-Nitropyrene (2-NP) and 2-nitrofluoranthene (2-NFR) in Singapore were mainly formed under the daytime OH-initiated reaction pathway. Combined with airmass backward trajectory analysis, the Indonesia air mass could have influenced Singapore’s air pollution levels in PSW. However, these survey results showed that no effect was found on the concentrations of PAHs and NPAHs in PM2.5 in Indonesia during SW because of Indonesia’s efforts in the environment. It is worth noting that air masses from southern China could impact the PAH and NPAH concentrations according to long-range transportation during the NE. The results of the total incremental lifetime cancer risk (ILCR) via three exposure routes (ingestion, inhalation and dermal absorption) for males and females during the four seasons indicated a low long-term potential carcinogenic risk, with values ranging from 10−10 to 10−7. This study systematically explains the latest pollution conditions, sources, and potential health risks in Singapore, and comprehensively analyses the impact of the tropical monsoon system on air pollution in Singapore, providing a new perspective on the transmission mechanism of global air pollution.

Funder

the Bilateral Open Partnership Joint Research Projects of the Japan Society for the Promotion of Science, Japan

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3