Optimization of the Efficient Extraction of Organic Components in Atmospheric Particulate Matter by Accelerated Solvent Extraction Technique and Its Application

Author:

Zhang Hao,Ren Yanqin,Wei Jie,Ji Yuanyuan,Bai Xurong,Shao Yanqiu,Li Hong,Gao Rui,Wu Zhenhai,Peng ZhijianORCID,Xue Feng

Abstract

Organic components in atmospheric fine particulate matter have attracted much attention and several scientific studies have been performed, although most of the sample extraction methods are time consuming and laborious. Accelerated solvent extraction (ASE) is a new sample extraction method offering number of advantages, such as low extraction cost, reduced solvent and time consumption, and simplified extraction protocols. In order to optimize ASE methods to determine the concentrations of organic compounds in atmospheric fine particulate matter, different parameters were set out for the experiment, and the optimal method was selected according to the recoveries of the standard (i.e., n−alkanes and polycyclic aromatic hydrocarbons (PAHs)). This study also involves a comparison of the optimal method with the traditional method of ultrasonic extraction (USE). In addition, the optimized method was applied to measure the mass concentrations of organic compounds (n−alkanes and PAHs) in fine particulate matter samples collected in Beijing. The findings showed that the average recovery of target compounds using ASE was 96%, with the majority of compounds falling within the confidence levels, and the ASE recoveries and precision were consistent with the USE method tested. Furthermore, ASE combines the advantages of high extraction efficiency, automation, and reduced solvent use. In conclusion, the optimal ASE methods can be used to extract organic components in atmospheric particulate matter and serve as a point of reference for the development of analytical methodologies for assessing organic compounds in atmospheric particulate matter in China.

Funder

National Natural Science Foundation of China

the Fundamental Research Funds for Central Public Welfare Scientific Research Institutes of China, Chinese Research Academy of Environmental Sciences

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3