Greenhouse Gas Emissions Response to Fertilizer Application and Soil Moisture in Dry Agricultural Uplands of Central Kenya

Author:

Mosongo Peter Semba,Pelster David E.ORCID,Li Xiaoxin,Gaudel Gokul,Wang Yuying,Chen Suying,Li Wenyan,Mburu David,Hu Chunsheng

Abstract

In sub-Saharan Africa, agriculture can account for up to 66% of anthropogenic greenhouse gas (GHG) emissions. Unfortunately, due to the low number of studies in the region there is still much uncertainty on how management activities can affect these emissions. To help reduce this uncertainty, we measured GHG emissions from three maize (Zea mays) growing seasons in central Kenya. Treatments included: (1) a no N application control (C); (2) split (30% at planting and 70% 1 month after planting) mineral nitrogen (N) applications (Min—100 kg N ha−1); (3) split mineral N + irrigation (equivalent to 10 mm precipitation every three days—MI); (4) split mineral N + 40 kg N ha−1 added as manure (MM—total N = 140 kg ha−1); and (5) split mineral + intercropping with faba beans (Phaseolus vulgaris—MB). Soil CO2 fluxes were lower in season 1 compared to seasons 2 and 3 with fluxes highest in Min (p = 0.02) in season 2 and lowest in C (p = 0.02) in season 3. There was uptake of CH4 in these soils that decreased from season 1 to 3 as the mean soil moisture content increased. Cumulative N2O fluxes ranged from 0.25 to 2.45 kg N2O-N ha−1, with the highest fluxes from MI during season 3 (p = 0.01) and the lowest from C during season 1 (p = 0.03). The average fertilizer induced emission factor (0.36 ± 0.03%) was roughly one-third the default value of 1%. Soil moisture was a critical factor controlling GHG emissions in these central Kenya highlands. Under low soil moisture, the soils were CH4 sinks and minimal N2O sources.

Funder

Sino-Africa Joint Research Project

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

Reference58 articles.

1. Food systems are responsible for a third of global anthropogenic GHG emissions

2. Agriculture, Forestry and Other Land Use Emissions by Sources and Removals by Sinks;Tubiello;ESS Work. Pap.,2014

3. Tripling crop yields in tropical Africa

4. Fertilizer in Kenya: Factors Driving the Increase in Usage by Smallholder Farmers;Ariga,2011

5. World Fertilizer Trends and Outlook to 2022,2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3