Evaluation of Different Oxygen Carriers for Chemical Looping Reforming of Toluene as Tar Model Compound in Biomass Gasification Gas: A Thermodynamic Analysis

Author:

Wang Zhiqi,Zhang JinzhiORCID,Wu Jingli,He TaoORCID,Wu Jinhu

Abstract

A thermodynamic study on a toluene chemical looping reforming process with six metal oxides was conducted to evaluate the product distribution for selecting an appropriate oxygen carrier with thermodynamic favorability towards high syngas yield. The results show that a suitable operation temperature for most oxygen carriers is 900 °C considering syngas selectivity and solid C formation whether the toluene is fed alone or together with fuel gas. The syngas selectivity of all oxygen carriers decreases with the increasing equivalence ratio, but the decrease degrees are quite different due to their different thermodynamic natures. With the increasing amounts of H2 and CO, the syngas selectivity for various oxygen carriers correspondingly decreases. The addition of CO2 and H2O(g) benefits reducing the solid C formation, whereas the addition of CH4 leads to more solid C being produced. Under the simulated gasification gas atmosphere, a synergetic elimination of solid C and water–gas shift reactions are observed. In terms of syngas selectivity, Mn2O3 possesses the best performance, followed by CaFe2O4 and Fe2O3, but NiO and CuO exhibit the lowest performance. BaFe2O4 presents a high H2 selectivity but a very poor CO selectivity due to the formation of BaCO3, which has a high thermodynamic stability below 1200 °C. Nevertheless, Mn2O3 is more likely to form solid C than feeding toluene alone and has a lower melting point. Considering syngas selectivity, carbon deposit and melting point, CaFe2O4 exhibits the highest performance concerning the tar chemical looping.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3