Projected Changes in Terrestrial Vegetation and Carbon Fluxes under 1.5 °C and 2.0 °C Global Warming

Author:

Peng Xiaobin,Yu Miao,Chen HaishanORCID

Abstract

The terrestrial ecosystem plays a vital role in regulating the exchange of carbon between land and atmosphere. This study investigates how terrestrial vegetation coverage and carbon fluxes change in a world stabilizing at 1.5 °C and 2 °C warmer than pre-industrial level. Model results derived from 20 Earth System Models (ESMs) under low, middle, and high greenhouse emission scenarios from CMIP5 and CMIP6 are employed to supply the projected results. Although the ESMs show a large spread of uncertainties, the ensemble means of global LAI are projected to increase by 0.04 ± 0.02 and 0.08 ± 0.04 in the 1.5 and 2.0 °C warming worlds, respectively. Vegetation density is projected to decrease only in the Brazilian Highlands due to the decrease of precipitation there. The high latitudes in Eurasia are projected to have stronger increase of LAI in the 2.0 °C warming world compared to that in 1.5 °C warming level caused by the increase of tree coverage. The largest zonal LAI is projected around 70° N while the largest zonal NPP is projected around 60° N and equator. The zonally inhomogeneous increase of vegetation density and productivity relates to the zonally inhomogeneous increase of temperature, which in turn could amplify the latitudinal gradient of temperature with additional warming. Most of the ESMs show uniform increases of global averaged NPP by 10.68 ± 8.60 and 15.42 ± 10.90 PgC year−1 under 1.5 °C and 2.0 °C warming levels, respectively, except in some sparse vegetation areas. The ensemble averaged NEE is projected to increase by 3.80 ± 7.72 and 4.83 ± 10.13 PgC year−1 in the two warming worlds. The terrestrial ecosystem over most of the world could be a stronger carbon sink than at present. However, some dry areas in Amazon and Central Africa may convert to carbon sources in a world with additional 0.5 °C warming. The start of the growing season in the northern high latitudes is projected to advance by less than one month earlier. Five out of 10 CMIP6 ESMs, which use the Land Use Harmonization Project (LUH2) dataset or a prescribed potential vegetation distribution to constrain the future change of vegetation types, do not reduce the model uncertainties in projected LAI and terrestrial carbon fluxes. This may suggest the challenge in optimizing the carbon fluxes modeling in the future.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3