Study on Determination of Excessive Emissions of Heavy Diesel Trucks Based on OBD Data Repaired

Author:

He Weinan,Zheng Xiaobin,Zhang Yumeng,Han Yuan

Abstract

It has been recognized that emission control for heavy diesel trucks should be given priority, as a massive amount of pollutants (e.g., NOx) are emitted from heavy diesel trucks. Although pollutants can be filtered to a considerable extent by after-treatment devices equipment, emissions can still exceed the designated standards when after-treatment devices function improperly. To timely identify excessive emissions, we propose a general and systematic framework, including a data quality assessment and a data repairing and excessive emission determination process, based on the data sensed from the on-board diagnostics (OBD) monitoring system. To overcome the adverse effects of poor data quality, a set of approaches have been developed for the different statuses of data quality. When all variables contain missing or abnormal values, data repairing algorithms can be employed to improve data quality. Two strategies have been developed for the situation where only the NOx data is problematic. One is to improve data quality by using the other variables before identifying excessive emissions, and the other is to directly predict whether the emissions exceed recommendations by using other variables without the data quality problem. To reduce the impact of noise and extreme values, three methods based on the moving average principle have been developed to generate an aggregated emission level for the determination of excessive emissions. In the experimental study, we employed a number of machine learning algorithms to achieve data repairing and prediction. The support vector machine (SVM) algorithm slightly outperforms the random forests (RF) and gradient boosting decision tree (GBDT) in the prediction of the excessive emission possibility in terms of prediction accuracy. The experimental results indicate that the most accurate data repairing can be achieved by probabilistic principal component analysis (PPCA), as compared to non-negative matrix factorization (NNMF) and k-nearest neighbor (KNN). However, the proposed approach does not restrict other algorithms from achieving the functions of data repairing and prediction.

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

Reference31 articles.

1. Study on Measures and Methods of Controlling Vehicle Exhaust Pollutants Emission;Zhang;Environ. Dev.,2017

2. Application of On-board Diagnostic System (OBD) in Vehicle Emission Control;Lin;Agric. Equip. Veh. Eng.,2007

3. Development of SCR system simulation platform based on CAN bus;Liu;J. Chongqing Univ. Technol. (Nat. Sci.),2017

4. Research on On-line Vehicle Emission Monitoring Based on OBD-Ⅱ System;Luo;China Manganese Ind.,2017

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3