Abstract
Lightning activity has been recognized to have, historically, social and environmental consequences around the globe. This work analyzes the space-time distribution of lightning-densities (D) in an extended Central America region (ECA). World Wide Lightning Location Network data was analyzed to link D with dominant climate patterns over the ECA for 2012–2020. D associated with cold surges entering the tropics dominate during boreal winter. The highest D (hot-spots) was found to agree well with previously known sites, such as the “Catatumbo” in Venezuela; however, D was lower here due to different detection efficiencies. Previously reported hot-spots showed strong continental signals in CA; however, in this work, they were over the oceans near to coastlines, especially in the eastern tropical Pacific (ETP). Most cold-spots, implying a minimum of vulnerability to human impacts and to some industries, were situated in the Caribbean Sea side of Central America. The Mid-Summer-Drought and the Caribbean-Low-Level-Jet (CLLJ) markedly reduced the D during July-August. The CLLJ in the central CS and across the Yucatan and the southern Gulf of Mexico acts as a lid inhibiting convection due to its strong vertical shear during the boreal summer. The CLLJ vertical wind-shear and its extension to the Gulf of Papagayo also diminished convection and considerably decreased the D over a region extending westward into the ETP for at least 400–450 km. A simple physical mechanism to account for the coupling between the CLLJ, the MSD, and lightning activity is proposed for the latter region.
Subject
Atmospheric Science,Environmental Science (miscellaneous)
Reference68 articles.
1. Mayan Calendrics in Movement in Guatemala: Mayan Spiritual Guides or Day-keepers Understandings of 2012
2. Cosmovisión indígena Bribri, Cabécar para docentes indígenas de II Ciclo;Fernández-Torres,1921
3. Deaths by Lightning in Mexico (1979–2011): Threat or Vulnerability?
4. Meteorology for Coastal Scientists;Rohli,2021
5. Central America in State of the Climate 2018;Amador;Bull. Am. Meteor. Soc.,2019
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献